In the present study, we investigated whether high arterial shear stresses at various exposure times or a sudden increase in shear stress introduced by a stenosis affect platelet activation and platelet microparticle formation in native human blood. We used a parallel-plate perfusion chamber device through which nonanticoagulated human blood was drawn (10 mL/min) by a pump directly from an antecubital vein through the flow channel of a perfusion chamber at wall shear rates of 420, 2600, and 10500 s-1. In another set of experiments, an eccentric stenosis was introduced into the flow channel. Wall shear rates of 2600 or 10500 s-1 at the stenosis apex were maintained at the same flow rate. The wall shear rate upstream and downstream of these stenoses was 420 s-1. A shear rate of 420 s-1 is within the range of those encountered in healthy small coronary arteries, whereas those of 2600 and 10500 s-1 are representative for vessels with various degrees of stenotic lesions. The blood was exposed to these shear rates for periods varying from 0.075 to 3.045 seconds. Platelet activation was assessed as activated glycoprotein (GP) IIb/IIIa by FITC-labeled monoclonal antibody (MAb) PAC-1 and aminophospholipid translocation by FITC-labeled annexin V. Microparticle formation was quantified by FITC-labeled MAb Y2/51 directed against GP IIIa. Significant platelet activation and formation of microparticles were observed at 10500 s-1 only (P < .008). This shear-induced platelet activation and microparticle formation were enhanced by introduction of a thrombus-promoting surface consisting of type III human collagen fibrils. Introduction of the most severe stenosis at 10500 s-1 further increased platelet activation (P < .017). The collagen-induced thrombus formation increased the platelet thrombus volume at 10500 s-1 from 16.5 to 33.8 microns3/microns2 (P < .003) on the stenosis apex when the most severe stenosis was used. A correlation (P < .0001) between platelet thrombus volume and platelet microparticle formation was observed in the presence of the eccentric stenoses. Apparently, high shear stress (315 dynes/cm2 at 10500 s-1), as encountered in severe atherosclerotic arteries, activated platelets and triggered platelet microparticle formation. In contrast, no significant platelet activation or formation of platelet microparticles was observed at physiological shear (420 s-1) or at the shear condition simulating shear in arteries with a less severe stenosis (2600 s-1). The data imply that platelets are activated and form microparticles in native blood at very high shear stresses. These events are potentiated by prolonged exposure to the high shear or by a sudden change of increasing shear due to the stenosis. The latter situation apparently enhances platelet thrombus formation at the stenosis.
The shear rate and corresponding shear stress have impacts on arterial thrombus formation. In particular, the effects of increasing concentration of platelets at the vessel wall and activation of platelets at this site increase the growth and stability of the thrombi which may result in a fatal narrowing of the arterial lumen. The efficacy of many antithrombotic agents is shear dependent as well. It is apparent that there is a need for a point-of-care device to rapidly monitor the risk for arterial thrombosis and to optimize antithrombotic therapy in vitro. The present review focuses on the essential role of shear rate on arterial thrombus formation in native human blood drawn directly from an antecubital vein.
This study confirms the synergistic antithrombotic effects of a combined ASA and clopidogrel therapy and shows the early benefit obtained with a loading dose of clopidogrel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.