Purpose Various regulatory and fiscal policy instruments are in force to reduce the amount of greenhouse gases and local pollutants emitted by private cars. The incentives operate primarily-or exclusively-on the newest generation of cars. But how fast will technological developments affecting new vehicle models penetrate into the car fleet? The speed at which the adverse effects of private car use will be mitigated through the normal vehicle renewal process, or through an accelerated one, carries considerable interest. Suitable modelling tools are needed. This paper aims to demonstrate the usefulness and flexibility of a bottom-up stock-flow modelling approach to private car fleet forecasting and policy analysis. Methods In the BIG model of the Norwegian automobile fleet, the annual stocks and flows characterising the car fleet are specified as matrices of 682 mutually exclusive and exhaustive cells, formed by cross-tabulations between 22 vehicle segments and 31 age classes. New car registrations follow from a disaggregate generic discrete choice model based on two decades of complete sales data for individual passenger car models. Results Example projections are presented onto the 2050 horizon under a low carbon fiscal policy scenario as well as a business-as-usual scenario. The fiscal policy is seen to make a large difference in terms of long term fuel consumption and CO 2 emissions. Conclusions Stock-flow cohort modelling of the automobile fleet is a powerful and handy tool for policy analysis. Even quite simple and straightforward accounting relations may provide important insights into the dynamics of fleet development. It is possible to incorporate, into the stock-flow modelling framework, interesting and useful behavioural relations, explaining aggregate automobile ownership and travel demand, scrapping and survival rates, or consumer choice in the market for new cars.
Background: Homeland security measures increasingly affect urban life and activities. Standoff distance, which prevents unscreened vehicles from approaching within a certain distance of a building, is a widely applied measure when protecting buildings against attacks with vehicle-borne improvised explosive devices. This measure both is rather inexpensive and has few negative externalities when implemented in rural areas. Unfortunately, sites with protection needs often are situated in city centres. Methods: We apply the so-called Security Function Framework to illuminate the externalities or the 'troublesome trade-offs' between protecting a high-value site against vehicle-borne improvised explosive devices and protecting other urban values.Results: This paper demonstrates that standoff creates challenges for other important values, such as functional office spaces for all employees, deliveries and emergency vehicle access. Simultaneously, standoff creates opportunities for reinforcing social-responsibility requirements, such as accessibility for pedestrians and environmental considerations. Conclusions: Security measures can have both negative and positive externalities and planning might alleviate some of the negative ones.
Purpose The introduction of novel fuel and propulsion technologies, such as battery, (plug-in) hybrid and fuel cell electric vehicles, and the need to combat the exhaust emission of local and global pollutants from the passenger car fleet have enhanced the political interest in the vehicle purchase choices made by private households and firms, and in how these choices can be influenced through fiscal and regulatory penalties and incentives. Methods As a tool to understand and analyse such questions, we have developed a generic nested logit model of automobile choice, based on complete disaggregate vehicle sales data for Norway for the period ranging from January 1996 until July 2011. The data set contains 1.6 million vehicle transactions. Results Being sensitive to changes in the vehicle purchase tax and the fuel tax, the model discriminates well between various fiscal policy scenarios. In using the model for such purposes, one is greatly helped by the fact that the model distinguishes between price changes due to taxation and those originating from the manufacturing or marketing side. Conclusions The strongly CO 2 graduated vehicle purchase tax, with exemptions granted for battery electric vehicles, is shown to have a major impact on the average type approval rate of CO 2 emissions from new passenger cars registered in Norway. The fuel tax also helps induce car customers to buy low emission vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.