Streptococcus mitis is found in the oral cavity and nasopharynx and forms a significant portion of the human microbiome. In this study, in silico analyses indicated the presence of an Rgg regulator and short hydrophobic peptide (Rgg/SHP) cell-to-cell communication system in S. mitis. Although Rgg presented greater similarity to a repressor in Streptococcus pyogenes, autoinducing assays and genetic mutation analysis revealed that in S. mitis Rgg acts as an activator. Transcriptome analysis showed that in addition to shp, the system regulates two other downstream genes, comprising a segment of a putative lantibiotic gene cluster that is in a conjugative element locus in different members of the mitis group. Close comparison to a similar lantibiotic gene cluster in Streptococcus pneumoniae indicated that S. mitis lacked the full set of genes. Despite the potential of SHP to trigger a futile cycle of autoinduction, growth was not significantly affected for the rgg mutant under normal or antibiotic stress conditions. The S. mitis SHP was, however, fully functional in promoting cross-species communication and increasing S. pneumoniae surface polysaccharide production, which in this species is regulated by Rgg/SHP. The activity of SHPs produced by both species was detected in cocultures using a S. mitis reporter strain. In competitive assays, a slight advantage was observed for the rgg mutants. We conclude that the Rgg/SHP system in S. mitis regulates the expression of its own shp and activates an Rgg/SHP system in S. pneumoniae that regulates surface polysaccharide synthesis. Fundamentally, cross-communication of such systems may have a role during multispecies interactions. IMPORTANCE Bacteria secrete signal molecules into the environment which are sensed by other cells when the density reaches a certain threshold. In this study, we describe a communication system in Streptococcus mitis, a commensal species from the oral cavity, which we also found in several species and strains of streptococci from the mitis group. Further, we show that this system can promote cross-communication with S. pneumoniae, a closely related major human pathogen. Importantly, we show that this cross-communication can take place during coculture. While the genes regulated in S. mitis are likely part of a futile cycle of activation, the target genes in S. pneumoniae are potentially involved in virulence. The understanding of such complex communication networks can provide important insights into the dynamics of bacterial communities.
The collateral impact of antibiotics on the microbiome has attained increasing attention. However, the ecological consequences of long-term antibiotic exposure on the gut microbiome, including antibiotic resistance, are still limited. Here, we investigated long-term exposure effects to amoxicillin on the human gut microbiome and resistome. Fecal samples were collected from 20 patients receiving 3-months of amoxicillin or placebo treatment as part of a Norwegian multicenter clinical trial on chronic low back pain (AIM study). Samples were collected at baseline, last day of treatment, and 9 months after antibiotic cessation. The abundance and diversity of microbial and resistome composition were characterized using whole shotgun and functional metagenomic sequencing data. While the microbiome profiles of placebo subjects were stable over time, discernible changes in diversity and overall microbiome composition were observed after amoxicillin treatment. In particular, health-associated short-chain fatty acid producing species significantly decreased in proportion. However, these changes were short-lived as the microbiome showed overall recovery 9 months post-treatment. On the other hand, exposure to long-term amoxicillin was associated with an increase in total antimicrobial resistance gene load and diversity of antimicrobial resistance genes, with persistent changes even at 9 months post-treatment. Additionally, beta-lactam resistance was the most affected antibiotic class, suggesting a targeted response to amoxicillin, although changes at the gene level varied across individuals. Overall, our results suggest that the impact of prolonged amoxicillin exposure was more explicit and long-lasting in the fecal resistome than in microbiome composition. Such information is relevant for designing rational administration guidelines for antibiotic therapies.
BackgroundThe aim of this study was to compare the ability of four commercially available media for screening extended-spectrum beta-lactamase (ESBL) to detect and identify ESBL-producing Salmonella and Shigella in fecal samples.A total of 71 Salmonella- and 21 Shigella-isolates producing ESBLA and/or AmpC, were received at Norwegian Institute of Public Health between 2005 and 2012. The 92 isolates were mixed with fecal specimens and tested on four ESBL screening media; ChromID ESBL (BioMèrieux), Brilliance ESBL (Oxoid), BLSE agar (AES Chemunex) and CHROMagar ESBL (CHROMagar). The BLSE agar is a biplate consisting of two different agars. Brilliance and CHROMagar are supposed to suppress growth of AmpC-producing bacteria while ChromID and BLSE agar are intended to detect both ESBLA and AmpC.ResultsThe total sensitivity (ESBLA + AmpC) with 95% confidence intervals after 24 hours of incubation were as follows: ChromID: 95% (90.4-99.6), Brilliance: 93% (87.6-98.4), BLSE agar (Drigalski): 99% (96.9-100), BLSE agar (MacConkey): 99% (96.9-100) and CHROMagar: 85% (77.5-92.5). The BLSE agar identified Salmonella and Shigella isolates as lactose-negative. The other agars based on chromogenic technology displayed Salmonella and Shigella flexneri isolates with colorless colonies (as expected). Shigella sonnei produced pink colonies, similar to the morphology described for E. coli.ConclusionAll four agar media were reliable in screening fecal samples for ESBLA-producing Salmonella and Shigella. However, only ChromID and BLSE agar gave reliable detection of AmpC-producing isolates. Identification of different bacterial species based on colony colour alone was not accurate for any of the four agars.
Streptococcus pneumoniae transformation occurs within a short competence window, during which the alternative sigma factor X (SigX) is activated to orchestrate the expression of genes allowing extracellular DNA uptake and recombination. Importantly, antibiotic stress promotes transcriptional changes that may affect more than 20% of the S. pneumoniae genome, including competence genes. These can be activated or repressed, depending on the antibiotic agent. For most antibiotics, however, it remains unknown whether transcriptional effects on competence translate into altered transformability. Here we investigate the effect of antibiotic subinhibitory concentrations on sigX expression using a luciferase reporter, and correlate for the first time with transformation kinetics. Induction of sigX expression by ciprofloxacin and novobiocin correlated with increased and prolonged transformability in S. pneumoniae. The prolonged effect of ciprofloxacin on competence and transformation was also observed in the streptococcal relatives Streptococcus mitis and Streptococcus mutans. In contrast, tetracycline and erythromycin, which induced S. pneumoniae sigX expression, had either an inhibitory or a nonsignificant effect on transformation, whereas streptomycin and the β-lactam ampicillin, inhibited both sigX expression and transformation. Thus, the results show that antibiotics may vary in their effects on competence, ranging from inhibitory to stimulatory effects, and that responses affecting transcription of sigX do not always correlate with the transformation outcomes. Antibiotics that increase or decrease transformation are of particular clinical relevance, as they may alter the ability of S. pneumoniae to escape vaccines and antibiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.