The avian pneumovirus (APV) outbreak in the United States is concentrated in the north-central region, particularly in Minnesota, where more outbreaks in commercial turkeys occur in the spring (April to May) and autumn (October to December). Comparison of the nucleotide and amino acid sequences of nucleoprotein (N), phosphoprotein (P), matrix (M), fusion (F), and second matrix (M2) genes of 15 U.S. APV strains isolated between 1996 and 1999 revealed between 89 and 94% nucleotide sequence identity and 81 to 95% amino acid sequence identity. In contrast, genes from U.S. viruses had 41 to 77% nucleotide sequence identity and 52 to 78% predicted amino acid sequence identity with European subgroup A or B viruses, confirming that U.S. viruses belonged to a separate subgroup. Of the five proteins analyzed in U.S. viruses, P was the most variable (81% amino acid sequence identity) and N was the most conserved (95% amino acid sequence identity).
Phylogenetic comparison of subgroups A, B, and C viruses indicated that A and B viruses were more closely related to each other than either A or B viruses were to C viruses.The Turkey rhinotracheitis virus, commonly referred to as avian pneumovirus (APV), is a member of the Paramyxoviridae family that causes acute rhinotracheitis in turkeys that is characterized by coughing, nasal discharge, tracheal rales, foamy conjunctivitis, and sinusitis in turkeys of all ages. In laying birds, there is a transient drop in egg production, along with mild respiratory tract illness (11). Uncomplicated cases have low mortality (2 to 5%), but APV infections accompanied by secondary infections (bacterial and/or viral) can result in up to 25% mortality (11). APV was first detected in South Africa in 1978 but was isolated soon thereafter in the United Kingdom,
The matrix (M) protein of avian pneumovirus (APV) was evaluated for its antigenicity and reliability in an enzyme-linked immunosorbent assay (ELISA) for diagnosis of APV infection, a newly emergent disease of turkeys in United States. Sera from APV-infected turkeys consistently contained antibodies to a 30-kDa protein (M protein). An ELISA based on recombinant M protein generated in Escherichia coli was compared with the routine APV ELISA that utilizes inactivated virus as antigen. Of 34 experimentally infected turkeys, 33 (97.1%) were positive by M protein ELISA whereas only 18 (52.9%) were positive by routine APV ELISA 28 days after infection. None of the serum samples from 41 uninfected experimental turkeys were positive by M protein ELISA. Of 184 field sera from turkey flocks suspected of having APV infection, 133 (72.3%) were positive by M protein ELISA whereas only 99 (53.8%) were positive by routine APV ELISA. Twelve serum samples, which were negative by M protein ELISA but positive by routine APV ELISA, were not reactive with either recombinant M protein or denatured purified APV proteins by Western analysis. This indicates that the samples had given false-positive results by routine APV ELISA. The M protein ELISA was over six times more sensitive than virus isolation (11.5%) in detecting infections from samples obtained from birds showing clinical signs of APV infection. Taken together, these results show that ELISA based on recombinant M protein is a highly sensitive and specific test for detecting antibodies to APV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.