This work is an experimental study of the rise of an air bubble in still water. For the bubble diameter considered, path oscillations develop in the absence of shape oscillations and the effect of surfactants is shown to be negligible. Both the three-dimensional motion of the bubble and the velocity induced in the liquid are investigated. After the initial acceleration stage, the bubble shape remains constant and similar to an oblate ellipsoid with its symmetry axis parallel to the bubble-centre velocity, and with constant velocity magnitude. The bubble motion combines path oscillations with slow trajectory displacements. (These displacements, which consist of horizontal drift and rotation about a vertical axis, are shown to have no influence on the oscillations). The bubble dynamics involve two unstable modes which have the same frequency and are π/2 out of phase. The primary mode develops first, leading to a plane zigzag trajectory. The secondary mode then grows, causing the trajectory to progressively change into a circular helix. Liquid-velocity measurements are taken up to 150 radii behind the bubble. The nature of the liquid flow field is analysed from systematic comparisons with potential theory and direct numerical simulations. The flow is potential in front of the bubble and a long wake develops behind. The wake structure is controlled by two mechanisms: the development of a quasi-steady wake that spreads around the non-rectilinear bubble trajectory; and the wake instability that generates unsteady vortices at the bubble rear. The velocities induced by the wake vortices are small compared to the bubble velocity and, except in the near wake, the flow is controlled by the quasi-steady wake.
An experimental investigation of a homogeneous swarm of rising bubbles is presented. The experimental arrangement ensures that all the bubbles have the same equivalent radius, a = 1.25 mm. This particular size corresponds to high-Reynolds-number ellipsoidal rising bubbles. The gas volume fractions α is small, ranging from 0.5 to 1.05%. The results are compared with the reference situation of a single rising bubble, which was investigated in a previous work. From the use of conditional statistics, the existence of two regions in which the liquid velocity fluctuations are of a different nature are distinguished. In the vicinity of the bubbles, the liquid fluctuations are the same as those measured close to a single rising bubble. They therefore do not depend on α. Far from the bubble, the liquid fluctuations are controlled by the nonlinear interactions between the wakes of all the bubbles. Their probability density function scales as α0.4, exhibiting a self-similar behaviour. The total fluctuation combines the contributions of these two regions weighted by the fraction of the liquid volume they occupy. The contribution of the bubble vicinity is thus shown to vary linearly with α while the wake contribution does not. Both are non-isotropic since strong upward vertical fluctuations are more probable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.