When voltage is suddenly applied to vertical, parallel dielectric-coated electrodes dipped into a liquid with finite conductivity, the liquid responds by rising up to reach a new hydrostatic equilibrium height. On the microfluidic scale, the dominating mechanism impeding this electromechanically induced actuation appears to be a dynamic friction force that is directly proportional to the velocity of the contact line moving along the solid surface. This mechanism has its origin in the molecular dynamics of the liquid coming into contact with the solid surface. A simple reduced-order model for the rising column of liquid is used to quantify the magnitude of this frictional effect by providing estimates for the contact line friction coefficient. Above some critical threshold of voltage, the electromechanical force is clamped, presumably by the same mechanism responsible for contact angle saturation and previously reported static height-of-rise limits. The important distinction for the dynamic case is that the onset of the saturation effect is delayed in time until the column has risen more than about halfway to its static equilibrium height.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.