Triazole-resistance has been reported increasingly in Aspergillus fumigatus. An international expert team proposed to avoid triazole monotherapy for the initial treatment of invasive aspergillosis in regions with >10% environmental-resistance, but this prevalence is largely unknown for most American and African countries. Here, we screened 584 environmental samples (soil) from urban and rural locations in Mexico, Paraguay, and Peru in Latin America and Benin and Nigeria in Africa for triazole-resistant A. fumigatus. Samples were screened using triazole-containing agars and confirmed as triazole-resistant by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) broth dilution reference method. Isolates were further characterized by cyp51A sequencing and short-tandem repeat typing. Fungicide presence in samples was likewise determined. Among A. fumigatus positive samples, triazole-resistance was detected in 6.9% (7/102) of samples in Mexico, 8.3% (3/36) in Paraguay, 9.8% (6/61) in Peru, 2.2% (1/46) in Nigeria, and none in Benin. Cyp51A gene mutations were present in most of the triazole-resistant isolates (88%; 15/17). The environmentally-associated mutations TR34/L98H and TR46/Y121F/T289A were prevalent in Mexico and Peru, and isolates harboring these mutations were closely related. For the first time, triazole-resistant A. fumigatus was found in environmental samples in Mexico, Paraguay, Peru, and Nigeria with a prevalence of 7–10% in the Latin American countries. Our findings emphasize the need to establish triazole-resistance surveillance programs in these countries.
Background:We evaluated the quantitative DiaSorin Liaison SARS-CoV-2 antigen test in symptomatic and asymptomatic individuals consulting their general practioner (GP) during a period of stable intense virus circulation (213/100,000 habitants per day). Methods:Left-over RT-PCR positive (n=204) and negative (n=210) nasopharyngeal samples were randomly selected among fresh routine samples collected from patients consulting their GP. Samples were tested on Liaison XL according to the manufacturer’s instructions. Equivocal results were considered positive. Results:Overall sensitivity and specificity of the Liaison antigen test compared to RT-PCR were 67.7% [95% confidence interval (CI): 60.9%-73.7%] and 100% [CI: 97.8%-100%]. Sensitivity in samples with a viral load ≥105, ≥104 and ≥103 copies/mL was 100% [CI: 96.3%-100.0%], 96.5% [CI: 91.8%-98.7%] and 87.4% [CI: 81.3%-91.5%], respectively. All samples ≤103 copies/mL were antigen negative. The ratio of antigen concentration to viral load in samples ≥103 copies/mL was comparable in symptomatic and asymptomatic individuals (p=0.58). The proportion of RT-PCR positive participants with a high viral load (≥105 copies/mL) was not significantly higher in symptomatic than in asymptomatic participants (63.9% [CI: 54.9%-72.0%] vs. 51.9% [CI: 41.1%-62.6%], p=0.11), but the proportion of participants with a low viral load (<103 copies/mL) was significantly higher in asymptomatic than in symptomatic RT-PCR positive participants (35.4% [CI: 25.8%-46.4%] vs. 14.3% [CI: 9.0%-21.8%], p<0.01). Conclusions:Sensitivity and specificity in samples with a viral load ≥104 copies/mL was 96.5% and 100%. The correlation of antigen concentration with viral load was comparable in symptomatic and asymptomatic individuals.
Candida auris is a difficult-to-identify, emerging yeast and a cause of sustained nosocomial outbreaks. Presently, not much data exist on laboratory preparedness in Europe. To assess the ability of laboratories in Belgium and Luxembourg to detect this species, a blinded C. auris strain was included in the regular proficiency testing rounds organized by the Belgian public health institute, Sciensano. Laboratories were asked to identify and report the isolate as they would in routine clinical practice, as if grown from a blood culture. Of 142 respondents, 82 (57.7%) obtained a correct identification of C. auris. Of 142 respondents, 27 (19.0%) identified the strain as Candida haemulonii. The remaining labs that did not obtain a correct identification (33/142, 23.2%), reported other yeast species (4/33) or failed to obtain a species identification (29/33). To assess awareness about the infection-control implications of the identification, participants were requested to indicate whether referral of this isolate to a reference laboratory was desirable in a clinical context. Over one-third of all respondents (54/142, 38.0%) stated that they would not send the isolate to a reference laboratory, neither for epidemiological reasons nor for identification confirmation or antifungal susceptibility testing. This comprised 41.5% of the laboratories that submitted an identification of C. auris (34/82). Awareness among Belgian microbiologists, therefore, remains inadequate more than two years after C. auris’ emergence in European clinics. Our data confirm high rates of misidentifications with commonly used identification methods. Programs for raising awareness in European hospitals may be warranted.
From early 2020, a high demand for SARS-CoV-2 tests was driven by several testing indications, including asymptomatic cases, resulting in the massive roll-out of PCR assays to combat the pandemic. Considering the dynamic of viral shedding during the course of infection, the demand to report cycle threshold (Ct) values rapidly emerged. As Ct values can be affected by a number of factors, we considered that harmonization of semi-quantitative PCR results across laboratories would avoid potential divergent interpretations, particularly in the absence of clinical or serological information. A proposal to harmonize reporting of test results was drafted by the National Reference Centre (NRC) UZ/KU Leuven, distinguishing four categories of positivity based on RNA copies/mL. Pre-quantified control material was shipped to 124 laboratories with instructions to setup a standard curve to define thresholds per assay. For each assay, the mean Ct value and corresponding standard deviation was calculated per target gene, for the three concentrations (107, 105 and 103 copies/mL) that determine the classification. The results of 17 assays are summarized. This harmonization effort allowed to ensure that all Belgian laboratories would report positive PCR results in the same semi-quantitative manner to clinicians and to the national database which feeds contact tracing interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.