Trimethylation of histone H3 at lysine 4 (H3K4me3) is regarded as a hallmark of active human promoters, but it remains unclear how this posttranslational modification links to transcriptional activation. Using a stable isotope labeling by amino acids in cell culture (SILAC)-based proteomic screening we show that the basal transcription factor TFIID directly binds to the H3K4me3 mark via the plant homeodomain (PHD) finger of TAF3. Selective loss of H3K4me3 reduces transcription from and TFIID binding to a subset of promoters in vivo. Equilibrium binding assays and competition experiments show that the TAF3 PHD finger is highly selective for H3K4me3. In transient assays, TAF3 can act as a transcriptional coactivator in a PHD finger-dependent manner. Interestingly, asymmetric dimethylation of H3R2 selectively inhibits TFIID binding to H3K4me3, whereas acetylation of H3K9 and H3K14 potentiates TFIID interaction. Our experiments reveal crosstalk between histone modifications and the transcription factor TFIID. This has important implications for regulation of RNA polymerase II-mediated transcription in higher eukaryotes.
The dermal papilla comprises the specialised mesenchymal cells at the base of the hair follicle. Communication between dermal papilla cells and the overlying epithelium is essential for differentiation of the hair follicle lineages. We report that Sox2 is expressed in all dermal papillae at E16.5,but from E18.5 onwards expression is confined to a subset of dermal papillae. In postnatal skin, Sox2 is only expressed in the dermal papillae of guard/awl/auchene follicles, whereas CD133 is expressed both in guard/awl/auchene and in zigzag dermal papillae. Using transgenic mice that express GFP under the control of the Sox2 promoter, we isolated Sox2+ (GFP+) CD133+ cells and compared them with Sox2- (GFP-) CD133+ dermal papilla cells. In addition to the `core' dermal papilla gene signature, each subpopulation expressed distinct sets of genes. GFP+CD133+ cells had upregulated Wnt, FGF and BMP pathways and expressed neural crest markers. In GFP- CD133+ cells,the hedgehog, IGF, Notch and integrin pathways were prominent. In skin reconstitution assays, hair follicles failed to form when dermis was depleted of both GFP+ CD133+ and GFP-CD133+ cells. In the absence of GFP+ CD133+cells, awl/auchene hairs failed to form and only zigzag hairs were found. We have thus demonstrated a previously unrecognised heterogeneity in dermal papilla cells and shown that Sox2-positive cells specify particular hair follicle types.
The Ccr4-Not complex is evolutionarily conserved and important for regulation of mRNA synthesis and decay. The composition of the yeast complex has been well described. Orthologues of the yeast Ccr4-Not components have been identified in human cells including multiple subunits with mRNA deadenylase activity. In the present study, we examine the composition of the human Ccr4-Not complex in an in-depth proteomic approach using stable cell lines expressing tagged CNOT proteins. We find at least four different variants of the human complex, consisting of seven stable core proteins and mutually exclusive associated mRNA deadenylase subunits. Interestingly, human CNOT4 is in a separate approximately 200 kDa complex. Furthermore, analyses of associated proteins indicate involvement of Ccr4-Not complexes in splicing, transport and localization of RNA molecules. Taken together, human Ccr4-Not complexes are heterogeneous in composition owing to differences in their deadenylase subunits, which may reflect the multi-functionality of these complexes in cellular processes.
The epidermis is maintained by multiple stem cell populations whose progeny differentiate along diverse, and spatially distinct, lineages. Here we show that the transcription factor Gata6 controls the identity of the previously uncharacterized sebaceous duct (SD) lineage and identify the Gata6 downstream transcription factor network that specifies a lineage switch between sebocytes and SD cells. During wound healing differentiated Gata6 cells migrate from the SD into the interfollicular epidermis and dedifferentiate, acquiring the ability to undergo long-term self-renewal and differentiate into a much wider range of epidermal lineages than in undamaged tissue. Our data not only demonstrate that the structural and functional complexity of the junctional zone is regulated by Gata6, but also reveal that dedifferentiation is a previously unrecognized property of post-mitotic, terminally differentiated cells that have lost contact with the basement membrane. This resolves the long-standing debate about the contribution of terminally differentiated cells to epidermal wound repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.