It is becoming increasingly appreciated that the structure and functioning of ecological food webs are controlled by the nature and level of plant chemicals. It is hypothesized that intraspecific variation in plant chemical resistance, in which individuals of a host-plant population exhibit genetic differences in their chemical contents (called 'plant chemotypes'), may be an important determinant of variation in food web structure and functioning. We evaluated this hypothesis using field assessments and plant chemical assays in the tansy plant Tanacetum vulgare L. (Asteraceae). We examined food webs in which chemotypes of tansy plants are the resource for two specialized aphids, their predators and mutualistic ants. The density of the ant-tended aphid Metopeurum fuscoviride was significantly higher on particular chemotypes (borneol) than others. Clear chemotype preferences between predators were also detected. Aphid specialist seven-spotted ladybird beetles (Coccinella septempunctata) were more often found on camphor plants, while significantly higher numbers of the polyphagous nursery web spider (Pisaura mirabilis) were observed on borneol plants. The analysis of plant chemotype effects on the arthropod community clearly demonstrates a range of possible outcomes between plant-aphid-predator networks. The findings help to offer a deeper insight into how one important factor--plant chemical content--influences which species coexist within a food web on a particular host plant and the nature of their trophic linkages.
Aims We tested whether chemical content of individual Tansy plants influences aboveground arthropod and belowground soil microbial community composition. Methods We use Tansy chemical defence composition as focus for our analysis, given that changes in chemical defence are a dominant mechanism expected to modify aboveground and belowground community composition and nutrient cycling. Detailed assessment of arthropod food webs were made on tansy chemotypes. Next generation soil DNA analyses were used to assess soil bacterial community. Results Tansy plants defended by Camphor and Borneol had higher total soil bacterial diversity than control plants (soils under non-Tansy plants) and Tansy chemotypes containing high concentrations of Thujon. Furthermore, the frequency of bacterial genera with a significant role in litter mineralization processes decreased with time in soil associated with Camphor and Borneol chemotypes, indicative of complete microbial decomposition and mineralization of plant material. No such changes occurred in soils associated with Thujon chemotypes. Thujon plants had fewer aphids, ladybirds, spiders, and Orius sp. than other chemotypes. Conclusions Our experiments revealed that Thujon chemotypes had different associated aboveground arthropod and belowground soil microbial communities than Camphor or Borneol chemotypes. The common qualitative response between aboveground and belowground communities to Tansy plant defense is consistent with our hypothesis and extensive literature on plant defense and aboveground and belowground feedbacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.