Summary Adherens junctions, which play a central role in intercellular adhesion, comprise clusters of type I classical cadherins that bind via extracellular domains extended from opposing cell surfaces. We show that a molecular layer seen in crystal structures of E- and N-cadherin ectodomains reported here and in the C-cadherin structure corresponds to the extracellular architecture of adherens junctions. In all three ectodomain crystals, cadherins dimerize through a trans adhesive interface and are connected by a second, cis, interface. Assemblies formed by E-cadherin ectodomains coated on liposomes also appear to adopt this structure. Fluorescent imaging of junctions formed from wild-type and mutant E-cadherins in cultured cells confirm conclusions derived from structural evidence. Mutations that interfere with the trans interface ablate adhesion, whereas cis interface mutations disrupt stable junction formation. Our observations are consistent with a model for junction assembly involving strong trans and weak cis interactions localized in the ectodomain.
Summary Individual mammalian neurons express distinct repertoires of protocadherin (Pcdh) -α, -β and -γ proteins that function in neural circuit assembly. Here we show that all three types of Pcdhs can engage in specific homophilic interactions, that cell surface delivery of alternate Pcdhα isoforms requires cis interactions with other Pcdh isoforms, and that the extracellular cadherin domain EC6 plays a critical role in this process. Analysis of specific combinations of up to five Pcdh isoforms showed that Pcdh homophilic recognition specificities strictly depend on the identity of all of the expressed isoforms, such that mismatched isoforms interfere with cell-cell interactions. We present a theoretical analysis showing that the assembly of Pcdh-α, –β and –γ isoforms into multimeric recognition units, and the observed tolerance for mismatched isoforms can generate the cell surface diversity necessary for single-cell identity. However, competing demands of non-self discrimination and self-recognition place limitations on the mechanisms by which recognition units can function.
Type I cadherin cell-adhesion proteins are similar in sequence and structure and yet are different enough to mediate highly specific cell-cell recognition phenomena. It has previously been shown that small differences in the homophilic and heterophilic binding affinities of different type I family members can account for the differential cell-sorting behavior. Here we use a combination of X-ray crystallography, analytical ultracentrifugation, surface plasmon resonance and double electron-electron resonance (DEER) electron paramagnetic resonance spectroscopy to identify the molecular determinants of type I cadherin dimerization affinities. Small changes in sequence are found to produce subtle structural and dynamical changes that impact relative affinities, in part via electrostatic and hydrophobic interactions, and in part through entropic effects because of increased conformational heterogeneity in the bound states as revealed by DEER distance mapping in the dimers. These findings highlight the remarkable ability of evolution to exploit a wide range of molecular properties to produce closely related members of the same protein family that have affinity differences finely tuned to mediate their biological roles.cadherin dimerization | protein family design | entropy contribution I n metazoans, the elaboration and maintenance of multicellular architectures relies upon the ability of cells to specifically adhere to one another. Cadherins constitute a superfamily of singlepass transmembrane proteins that can confer such specific adhesive properties to cells (1). In particular, the classical type I and type II cadherins, which are only found in vertebrates and are characterized by an extracellular region comprised of five extracellular cadherin (EC) domains, have been shown to help drive cell-patterning behavior in numerous settings: for example, in morphogenesis (2-4) and in neural patterning (5, 6). Cells expressing the same classical cadherin on their surface generally aggregate through homophilic interactions, whereas cells expressing different cadherins segregate into distinct layers that, in at least some instances, remain in contact with each other through heterophilic binding (7-9).Cell adhesion by classic cadherins is mediated by the dimerization of cadherin extracellular domains emanating from apposed cell surfaces through an interface confined to the N-terminal EC1 domain (Fig. 1A). Numerous crystal structures have revealed the atomic details of the trans (i.e., between cells) dimerization interface for three type I cadherins: C-, E-, and N-cadherins (10-13). In all three cases, the dimer partner molecules swap their N-terminal β-strand (the A*-strand), whose conserved Trp2 residues provide an "anchor" for the adhesive interface by docking into a complementary hydrophobic pocket in the partner protomer (Fig. 1A). A second dimerization interface that can form in the trans orientation has been observed in crystal structures of mutants of both type I and type II classical cadherins. Specifically, numerous mu...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.