Viral infection of the liver can lead to severe tissue damage when high levels of viral replication and spread in the organ are coupled with strong induction of inflammatory responses. Here we report an unexpected correlation between the expression of a functional X domain encoded by the hepatotropic mouse hepatitis virus strain A59 (MHV-A59), the high-level production of inflammatory cytokines, and the induction of acute viral hepatitis in mice. X-domain (also called macro domain) proteins possess poly-ADP-ribose binding and/or ADP-ribose-1-phosphatase (ADRP) activity. They are conserved in coronaviruses and in members of the "alpha-like supergroup" of phylogenetically related positive-strand RNA viruses that includes viruses of medical importance, such as rubella virus and hepatitis E virus. By using reverse genetics, we constructed a recombinant murine coronavirus MHV-A59 mutant encoding a single-amino-acid substitution of a strictly conserved residue that is essential for coronaviral ADRP activity. We found that the mutant virus replicated to slightly reduced titers in livers but, strikingly, did not induce liver disease. In vitro, the mutant virus induced only low levels of the inflammatory cytokines tumor necrosis factor alpha and interleukin-6 (IL-6). In vivo, we found that IL-6 production, in particular, was reduced in the spleens and livers of mutant virus-infected mice. Collectively, our data demonstrate that the MHV X domain exacerbates MHV-induced liver pathology, most likely through the induction of excessive inflammatory cytokine expression.
Allopurinol (ALP) hypersensitivity is a major cause of severe cutaneous adverse reactions and is strongly associated with the HLA-B*58:01 allele. However, it can occur in the absence of this allele with identical clinical manifestations. The immune mechanism of ALP-induced severe cutaneous adverse reactions is poorly understood, and the T cell–reactivity pattern in patients with or without the HLA-B*58:01 allele is not known. To understand the interactions among the drug, HLA, and TCR, we generated T cell lines that react to ALP or its metabolite oxypurinol (OXP) from HLA-B*58:01+ and HLA-B*58:01− donors and assessed their reactivity. ALP/OXP-specific T cells reacted immediately to the addition of the drugs and bypassed intracellular Ag processing, which is consistent with the “pharmacological interaction with immune receptors” (p-i) concept. This direct activation occurred regardless of HLA-B*58:01 status. Although most OXP-specific T cells from HLA-B*58:01+ donors were restricted by the HLA-B*58:01 molecule for drug recognition, ALP-specific T cells also were restricted to other MHC class I molecules. This can be explained by in silico docking data that suggest that OXP binds to the peptide-binding groove of HLA-B*58:01 with higher affinity. The ensuing T cell responses elicited by ALP or OXP were not limited to particular TCR Vβ repertoires. We conclude that the drug-specific T cells are activated by OXP bound to HLA-B*58:01 through the p-i mechanism.
Calreticulin and calnexin are homologous lectins that serve as molecular chaperones for glycoproteins in the endoplasmic reticulum of eukaryotic cells. Here we show that calreticulin depletion specifically accelerates the maturation of cellular and viral glycoproteins with a modest decrease in folding efficiency. Calnexin depletion prevents proper maturation of some proteins such as influenza hemagglutinin but does not interfere appreciably with the maturation of several others. A dramatic loss of stringency in the ER quality control with transport at the cell surface of misfolded glycoprotein conformers is only observed when substrate access to both calreticulin and calnexin is prevented. Although not fully interchangeable during assistance of glycoprotein folding, calreticulin and calnexin may work, independently, as efficient and crucial factors for retention in the ER of nonnative polypeptides.
Several plus-strand RNA viruses encode proteins containing macrodomains. These domains possess ADP-ribose-10-phosphatase (ADRP) activity and/or bind poly(ADP-ribose), poly(A) or poly(G). The relevance of these activities in the viral life cycle has not yet been resolved. Here, we report that genetically engineered mutants of severe acute respiratory syndrome coronavirus (SARS-CoV) and human coronavirus 229E (HCoV-229E) expressing ADRP-deficient macrodomains displayed an increased sensitivity to the antiviral effect of alpha interferon compared with their wild-type counterparts. The data suggest that macrodomain-associated ADRP activities may have a role in viral escape from the innate immune responses of the host.
The antiretroviral drug abacavir (abc) elicits severe drug hypersensitivity reactions in HLA-B*5701 + individuals. To understand the abc-specific activation of CD8 + T cells, we generated abc-specific T-cell clones (abc-TCCs). Abc reactivity could not be linked to the metabolism and/or processing of the drug, since abc metabolizing enzymes were not expressed in immune cells and inhibition of the proteasome in APCs did not affect TCC reactivity. Ca 2+ influx assays revealed different reactivity patterns of abc-TCCs. While all TCCs reacted to abc presented on HLA-B*5701 molecules, a minority also reacted immediately to abc in solution. Titration experiments showed that the ability to react immediately to abc correlated significantly with the TCR avidity of the T cells. Modifications of soluble abc concentrations revealed that the reactivity patterns of abc-TCCs were not fixed but dynamic. When TCCs with an intermediate TCR avidity were stimulated with increasing abc concentrations, they showed an accelerated activation kinetic. Thus, they reacted immediately to the drug, similar to the reaction of TCCs of high avidity. The observed immediate activation and the noninvolvement of the proteasome suggest that, in contrast to haptens, abc-specific T-cell stimulation does not require the formation of covalent bonds to produce a neo-antigenic determinant.Keywords: Abacavir hypersensitivity r HLA-B*5701 r TCR avidity Supporting Information available online IntroductionHypersensitivity reactions to drugs can lead to a variety of clinical symptoms and these involve different immune mechanisms [1]. Some of these reactions depend on genetic factors, among which HLA molecules play a particularly important role [2][3][4]. A striking example of such a genetic association is found in hypersensitivity reactions to the antiretroviral drug abacavir (abc), whereby it is strongly associated with the HLA-B*5701 allele [5]. Similar to other severe drug reactions [1], abc hypersensitivity Correspondence: Prof. Werner J. Pichler e-mail: wernerjoseph.pichler@insel.ch reactions involve drug-reacting T cells. This was illustrated by the presence of CD8 + T cells in skin biopsies of hypersensitive patients [6]. Moreover, a population of CD8 + T cells from HLA-B*5701 + individuals secrets IFN-γ in response to abc in vitro, irrespective of previous exposure to abc [7]. However, how abc is presented and subsequently stimulates T cells is still unclear.Currently, two models account for the stimulation of T cells by drugs. According to the hapten model, compounds bind to certain amino acids via covalent bonds, with or without previous metabolism of the drug. These hapten-modified proteins are then processed into antigenic peptides and are loaded onto MHC molecules of APCs. In this instance, the haptenization of molecules is important for the activation of the innate immune system [8]. If this was the case in abc hypersensitivity, these hapten complexes C
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.