Severe Covid-19 may cause a cascade of cardiovascular complications beyond viral pneumonia. The severe inflammation may affect the microcirculation which can be assessed by cardiovascular magnetic resonance (CMR) imaging using quantitative perfusion mapping and calculation of myocardial perfusion reserve (MPR). Furthermore, native T1 and T2 mapping have previously been shown to identify changes in myocardial perfusion by the change in native T1 and T2 during adenosine stress. However, the relationship between native T1, native T2, ΔT1 and ΔT2 with myocardial perfusion and MPR during long-term follow-up in severe Covid-19 is currently unknown. Therefore, patients with severe Covid-19 (n = 37, median age 57 years, 24% females) underwent 1.5 T CMR median 292 days following discharge. Quantitative myocardial perfusion (ml/min/g), and native T1 and T2 maps were acquired during adenosine stress, and rest, respectively. Both native T1 (R2 = 0.35, p < 0.001) and native T2 (R2 = 0.28, p < 0.001) correlated with myocardial perfusion. However, there was no correlation with ΔT1 or ΔT2 with MPR, respectively (p > 0.05 for both). Native T1 and native T2 correlate with myocardial perfusion during adenosine stress, reflecting the coronary circulation in patients during long-term follow-up of severe Covid-19. Neither ΔT1 nor ΔT2 can be used to assess MPR in patients with severe Covid-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.