The role of the avian epididymis in post-testicular development and capacitation was examined to assess whether avian spermatozoa undergo any processes similar to those characteristic of mammalian sperm development. We found no evidence of a need for quail sperm to undergo capacitation and 90% of testicular sperm could bind to a perivitelline membrane and acrosome react. However, computer-assisted sperm analysis showed that 20% of testicular sperm from the quail were capable of movement and only about 12% of the motile sperm would have a curvilinear velocity greater than the mean for sperm from the distal epididymis. Nevertheless, epididymal transit was associated with increases in mean sperm velocity and the proportion of motile sperm. Together, these findings explain why earlier workers have achieved some fertilizations following inseminations of testicular spermatozoa and also demonstrate the need for some epididymal maturation of avian spermatozoa. Analysis of the electrophoretic profile of quail epididymal luminal proteins revealed that only one major protein (w16 kDa) is secreted by the epididymis and it was virtually the only protein secreted by the ipsilateral epididymis following unilateral orchidectomy. Mass spectrometry showed that this protein is hemoglobin; this finding was confirmed using anti-hemoglobin antibodies. It is suggested that hemoglobin may support sperm metabolism in the quail epididymis, aid in motility, and/or serve as an antioxidant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.