We describe a simple single‐pot method for collection and preparation of natural water for microplastic analyses. The method prepares samples in the same vessel (mason jars) that they are collected in right up until the microplastics are transferred onto filters or spectroscopic windows for analyses. The method minimized contamination, degradation, and losses, while increasing recoveries and throughput when compared with conventional sieving. We applied it to surface grab samples collected from the Mississippi River and its major tributaries during and after historic flooding in 2019. Microplastics (>~30 µm) were quantified using Nile red fluorescence detection, and a small subset of samples were identified by micro‐Fourier transform infrared imaging spectroscopy. Concentrations were lower during the flooding, likely due to dilution. Concentrations ranged from approximately 14 microplastics/L in the Tennessee River during flooding to approximately 83 microplastics/L in the Ohio River during low‐flow (summer) conditions. Loads of microplastics tended to increase downriver and ranged from approximately 87 to approximately 129 trillion microplastics/d near New Orleans. Most of the microplastics (>60%) were in the lower size fraction (~30–90 µm) and consisted primarily of fragments (~85%), followed by fibers (~8%) and beads (~7%), with polyester, polyethylene, polypropylene, and polyacrylate as the primary microplastic types. Overall, we demonstrate that the single‐pot method is effective and versatile and, because it uses relatively inexpensive and easily assembled materials, can be adapted for microplastic surveys worldwide, especially those involving sample collection by volunteers from the community and schools. Environ Toxicol Chem 2020;39:986–995. © 2020 SETAC
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.