CE represents a very powerful separation tool in the area of chiral separations. CD-mediated chiral CE is a continuously flourishing technique within the frame of the electromigration methods. In this review, a brief overview of the synthetic procedures leading to modified CDs is provided first. Next, selected aspects related to the utilization of CDs in chiral CE are discussed specifically in the view of recently published data. Advantages of CDs and basic principles of chiral CE are remained. The topic of the determination of binding constants is touched. Particular attention is paid to the effort aiming at better understanding of the molecular level of the enantiorecognition between CDs and the analyte in the solution. Powerful approaches extensively utilized in this field are NMR, molecular modeling, and computer simulations. Then, a summary of applications of CDs in the CE enantioseparations is given, covering years 2008-2013. Finally, the general trend of modified CDs use in separation science is statistically evaluated.
This work documents the influence of the position of single carboxymethyl group on the β-cyclodextrin skeleton on the enantioselectivity. These synthesized monosubstituted carboxymethyl cyclodextrin (CD) derivatives, native β-cyclodextrin, and commercially available carboxymethyl-β-cyclodextrin with degree of substitution approximately 3 were used as additives into the BGE consisting of phosphate buffer at 20 mmol/L concentration, pH 2.5, and several biologically significant low-molecular-mass chiral compounds were enantioseparated by CE. The results indicate that different substituent location on β-cyclodextrin skeleton has a significant influence on the enantioseparation of the investigated enantiomers. The enantioselectivity of 2(I)-O-regioisomer was better than with native β-cyclodextrin. Comparable results to native β-cyclodextrin were obtained for 6(I)-O- regioisomer and the enantioselectivity of 3(I)-O-regioisomer was even worse than with native β-cyclodextrin. Commercially available derivative of CD provides better resolutions than the monosubstituted carboxymethyl CD derivatives for most of the investigated analytes.
Anammox bacteria enable an efficient removal of nitrogen from sewage in processes involving partial nitritation and anammox (PN/A) or nitrification, partial denitrification, and anammox (N-PdN/A). In mild climates, anammox bacteria must be adapted to 15 C, typically by gradual temperature decrease; however, this takes months or years. To reduce the time necessary for the adaptation, an unconventional method of cold shocks is promising, involving hours-long exposure of anammox biomass to extremely low temperatures. We compared the efficacies of gradual temperature decrease and cold shocks to increase the metabolic activity of anammox (fed-batch reactor, planktonic Ca. Kuenenia). We assessed the cold shock mechanism on the level of protein expression (quantitative shot-gun proteomics, LC-HRMS/MS) and structure of membrane lipids (UPLC-HRMS/MS). The shocked culture was more active (0.66+-0.06 vs 0.48+-0.06 kg-N/kg-VSS/d) and maintained the relative content of N-respiration proteins at levels consistent levels with the initial state, whereas the content of these proteins decreased in gradually acclimated culture. Cold shocks also induced a more efficient up-regulation of cold shock proteins (e.g. CspB, TypA, ppiD). Ladderane lipids characteristic for anammox evolved to a similar end-point in both cultures which confirms their role in anammox bacteria adaptation to cold and indicates a three-pronged adaptation mechanism involving ladderane lipids (ladderane alkyl length, introduction of shorter non-ladderane alkyls, polar headgroup). Overall, we show the outstanding potential of cold shocks for low-temperature adaptation of anammox bacteria and provide yet unreported detailed mechanisms of anammox adaptation to low temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.