MicroRNAs (miRNAs) are short non-coding RNAs that act as important regulators of gene expression as part of the epigenetic machinery. In addition to posttranscriptional gene silencing by miRNAs, the epigenetic mechanisms also include DNA methylation, histone modifications and their crosstalk. Epigenetic modifications were reported to play an important role in many disease onsets and progressions and can be used to explain several features of complex diseases, such as late onset and fluctuation of symptoms. However, miRNAs not only function as a part of epigenetic machinery, but are also epigenetically modified by DNA methylation and histone modification like any other protein-coding gene. There is a strong connection between epigenome and miRNome, and any dysregulation of this complex system can result in various physiological and pathological conditions. In addition, miRNAs play an important role in toxicogenomics and may explain the relationship between toxicant exposure and tumorigenesis. The present review provides information on 63 miRNA genes shown to be epigenetically regulated in association with 21 diseases, including 11 cancer types: cardiac fibrosis, cardiovascular disease, preeclampsia, Hirschsprung's disease, rheumatoid arthritis, systemic sclerosis, systemic lupus erythematosus, temporal lobe epilepsy, autism, pulmonary fibrosis, melanoma, acute myeloid leukemia, chronic lymphocytic leukemia, colorectal, gastric, cervical, ovarian, prostate, lung, breast, and bladder cancer. The review revealed that hsa-miR-34a, hsa-miR-34b, and hsa-miR-34c are the most frequently reported epigenetically dysregulated miRNAs. There is a need to further study molecular mechanisms of various diseases to better understand the crosstalk between epigenetics and gene expression and to develop new therapeutic options and biomarkers.
Polyamine synthesis represents one of the most profound metabolic changes during T cell activation, but the biological implications of this are scarcely known. Here, we show that polyamine metabolism is a fundamental process governing the ability of CD4 + helper T cells (T H ) to polarize into different functional fates. Deficiency in ornithine decarboxylase, a crucial enzyme for polyamine synthesis, results in a severe failure of CD4 + T cells to adopt correct subset specification, underscored by ectopic expression of multiple cytokines and lineage-defining transcription factors across T H cell subsets. Polyamines control T H differentiation by providing substrates for deoxyhypusine synthase, which synthesizes the amino acid hypusine, and mice in which T cells are deficient for hypusine develop severe intestinal inflammatory disease. Polyamine-hypusine deficiency caused widespread epigenetic remodeling driven by alterations in histone acetylation and a re-wired tricarboxylic acid (TCA) cycle. Thus, polyamine metabolism is critical for maintaining the epigenome to focus T H cell subset fidelity. ll
Epigenomics is one of the leading frontiers of postgenomics medicine. The challenges and prospects ahead in epigenomics are related not merely to technology innovation and clinical implementation but also to science communication. In this context, microRNAs (miRNAs) are an important part of the epigenomic regulatory machinery. As the number of publications reporting miRNA-target interactions (MTIs) is growing rapidly, there is an urgent need to standardize reporting. This study reports (1) an analysis of the published literature and databases reporting validated MTIs, and for the first time to the best of our knowledge (2) suggests a solution as a way forward, the minimum information required for MTI standard reporting. We retrieved the research reports from PubMed and Web of Science dating from 09/2006 to 01/2017 and downloaded information from DIANA-TarBase, miRecords, and miRTarBase. We evaluated the reporting and extracted MTI data, which we complemented with relevant genomic information. We suggest a standard minimum checklist for MTI reporting, consisting of seven pertinent data types: miRNA gene, target gene, species, experimental validation, sequence variants, associated phenotype, and additionally a PubMed identification (PMID) number in systematic reviews and meta-analyses. Our proposal reported here shall enable faster development of MTI databases and bioinformatics resources, and looking into the future, more efficient planning of experimental designs in the nascent field of epigenomics and its postgenomics applications.
Lipids play a major role in inflammatory diseases by altering inflammatory cell functions, either through their function as energy substrates or as lipid mediators such as oxylipins. Autophagy, a lysosomal degradation pathway that limits inflammation, is known to impact on lipid availability, however, whether this controls inflammation remains unexplored. We found that upon intestinal inflammation visceral adipocytes upregulate autophagy and that adipocyte-specific loss of the autophagy gene Atg7 exacerbates inflammation. While autophagy decreased lipolytic release of free fatty acids, loss of the major lipolytic enzyme Pnpla2/Atgl in adipocytes did not alter intestinal inflammation, ruling out free fatty acids as anti-inflammatory energy substrates. Instead, Atg7deficient adipose tissues exhibited an oxylipin imbalance, driven through an NRF2-mediated upregulation of Ephx1. This shift reduced secretion of IL-10 from adipose tissues, which was dependent on the cytochrome P450-EPHX pathway, and lowered circulating levels of IL-10 to exacerbate intestinal inflammation. These results suggest an underappreciated fat-gut crosstalk through an autophagy-dependent regulation of anti-inflammatory oxylipins via the cytochrome P450-EPHX pathway, indicating a protective effect of adipose tissues for distant inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.