umbellata (Autumn Olive) is a medicinal plant used in traditional Asian medicine. In this study, we examine E. umbellata, which grows in central Europe (Poland). Despite significant climatic differences in both regions, we show that the fruits have a similar chemical composition and antioxidant activity to those observed in their native areas. For the first time, we examined the fatty acid composition of E. umbellata, showing that unsaturated fatty content for as much as 88.67% of total fat. Including the content of essential polyunsaturated fatty acids was over 50% of the total fat. We also examined proximate content, the content of fat-soluble vitamins, lycopene, beta carotene, and the mineral composition of the fruit. Moreover, using FT-IR spectrometry, we have shown that the fruits of the Autumn olive can change the distribution of chemical bonds when treated with hydrogen peroxide. The fruits of E. umbellata showed dose-dependent antioxidant properties with IC50 values of 76.27 µg / ml We also investigated the kinetic antioxidant activity of E. umbellata fruits based on DPPH radical inhibition compared to standard antioxidants (vitamin c and BHT). We have shown that using available protocols to spectrophotometrically study antioxidants' reaction with the DPPH radical may underestimate the effects of the Autumn Olive fruits.
The hygienic practices on farms should reduce pathogenic microorganisms while simultaneously not harming the animals themselves; they must also not degrade the products’ quality. We assessed the effect of covering feed tables with paint containing silver nanoparticles (AgNPs) and the periodic spraying of effective microorganisms (EM) on production indicators and basic chemical composition, mineral content and fatty acid profiles in the bodies of Cornu aspersum aspersum snails. The animals were divided into four groups: (1) control, (2) with feed tables covered with AgNPs paint, (3) with EM spray applied and (4) with both factors—AgNP paint and EM spray. The highest increase in Ag, Zn, Fe and Ca retention, and the remodelling of the fatty acid profile in the carcasses of snails was found to be in the group of animals in contact with the feed tables covered with AgNP paint. In the group of animals exposed to the action of EM, an increased retention of Fe, Cu, P, Mg and Zn was found.
The main microbial contaminants of rooms in which laboratory rodents are housed are bacteria and fungi. Restriction of microbial growth to below threshold levels requires the application of various sophisticated antimicrobial techniques that must be effective and safe for the animals. Some of the most commonly used techniques, including chemical disinfection, ventilation, filtration, sterilization and radiation, are not always sufficiently effective. The aim of the current study was to evaluate the efficacy of a modern technique (i.e. radiant catalytic ionization (RCI)) on the microbiological status of an animal care facility, and the health of the mice housed therein. The experiment, conducted over seven days, compared an experimental room with an RCI system permanently turned on with a negative control room. At the completion of the experiment, the number of bacteria in the RCI room air and on its walls was lower than that in the control room ( p < 0.01 in both cases). Values of the basic prooxidative parameter, thiobarbituric acid reactive substances concentration, in tissues of mice from the RCI room were within allowed boundaries. Hence, application of an RCI system proved to be an ideal technique to ensure high hygienic standards in animal rooms without any adverse effects on the animals housed therein.
Background Colorectal cancer is the third most commonly diagnosed cancer. Natural compounds, administered together with conventional chemotherapeutic agent(s) and/or radiotherapy, may be a novel element in the combination therapy of this cancer. Considering the anticancer properties of compounds derived from different tissues of various snail species confirmed earlier, the purpose of the present research was to evaluate the effect of extracts from eggs of Helix aspera maxima and Helix aspersa aspersa snails, and fractions of extracts containing particles of different molecular weights on Caco-2 human epithelial colorectal adenocarcinoma cells. Methods The extracts and fractions were analyzed for antioxidant activity, phenols and total carbohydrates using colorimetric methods. Lipid peroxidation products and glutathione in eggs were also examined using these methods. Crude protein and fat in eggs were determined. Molecular weights of egg proteins and glycoproteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Astaxanthin, selected vitamins and amino acids in eggs were measured using liquid chromatography methods, and minerals by emission spectroscopy, mass spectrometry or X-ray fluorescence. The action of extracts on the cell viability was determined by the MTT (methylthiazolyldiphenyl-tetrazolium bromide) test, based on the mitochondrial oxidative activity, after 24 and 72 h of treatment. The influence of fractions on the cell viability was assayed after 24 h. The effect of extracts on the percentage of live and dead cells was evaluated by the trypan blue assay, in which live cells exclude trypan blue, while dead cells take up this dye, after 12, 24, 48 and 72 h of treatment. Their influence on the integrity of cell membranes was determined based on the activity of LDH (lactate dehydrogenase), released from damaged cells, after 24 and 72 h of treatment. Then, the effect of extracts on the content of lipid peroxidation products in cells was examined using colorimetric method, after 24 h of treatment. Their influence on types of cell death was determined by flow cytometry, after this time. Results The extracts and their fractions containing molecules <3 kDa decreased the cell viability, after 24 h of treatment. The extracts reduced the percentage of live cells (also after 48 h), increased the degree of cell membrane damage and the amount of lipid peroxidation products, induced apoptosis and reduced necrosis. Conclusions Antioxidants, phenols, lipid peroxidation products, anticancer peptides, restriction of methionine, appropriate ratio of essential amino acids to non-essential amino acids, vitamin D3, Ca, Mg, S, Cu, Mn, Zn, Se and other bioactive compounds comprised in the extracts and their additive and synergistic effects may have influenced Caco-2 cells. Natural extracts or the chemical compounds contained in them might be used in the combination therapy of colorectal cancer, which requires further research.
The aim of this research was to evaluate the effect of Ag nanoparticles (nano-Ag) used in the paint covering feed tables or a multimicrobial preparation applied to feed tables on the microbiological composition of the feed table environment, the growth and mortality of snails, and selected parameters for assessing the quality of carcasses and snail shells. The research was carried out in a farm of Cornu aspersum (Müller) snails. In the control (K) group, paint without nano-Ag was used. In two other groups (N-Ag and N-Ag + effective microorganisms (EM)), the feed tables were covered with the same paint as in the control group but with the addition of 100 mg/L of nano-Ag it (N-Ag group). Additionally, multimicrobial preparation (EM Bokashi®) at a concentration of 10% was spread on the tables in the N-Ag + EM group. In the last group (EM), the feed tables were covered with paint without nano-Ag, and only multimicrobial preparation was applied at a concentration of 10%. During the tests, the body weight of snails was measured three times, and swab samples were taken from the feed tables for the examination of microbiological composition. At the end of the experiment, the snails were killed, and the weight of the carcass and the size of the shell were measured. The content of Ag and the degree of lipid oxidation (thiobarbituric acid reactive substances (TBARS)) in the carcasses were analyzed, and the content of Ca and the crushing strength of the shells were determined. In the N-Ag and N-Ag + EM groups, a significant reduction in the total number of bacteria, fecal streptococci, and Escherichia coli was found, while there was also a reduction in mold and fungi in the N-Ag + EM and EM groups. In the K and EM groups, the mortality of animals was higher than in the nano-Ag groups. In subsequent weight checks, the highest body weight was found in the EM group and the lowest in the N-Ag and N-Ag + EM groups. In addition, the carcass weight and shell size in the N-Ag group was significantly lower compared to the K and EM groups. In the N-Ag and N-Ag + EM groups, a higher Ag content in the carcasses and a greater degree of lipid peroxidation were found. The Ca content of the shells was the highest in the N-Ag group, and the hardness of shells was the highest in the N-Ag and N-Ag + EM groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.