Multiple sclerosis is a T cell-mediated demyelinating disease of the central nervous system. Interleukin-17-producing T helper cells, named Th17 cells, represent a novel CD4+ T cell effector subset involved in the response against extracellular pathogens. In addition, Th17 cells are pathogenic in several animal models of autoimmune disease, including the animal model for multiple sclerosis, but their function in multiple sclerosis remains to be elucidated. In this study, we analysed the frequency and the phenotype of Th17 cells in the cerebrospinal fluid and peripheral blood of multiple sclerosis patients. We show that the frequency of Th17 cells is significantly higher in the cerebrospinal fluid of patients with relapsing-remitting multiple sclerosis during relapse, in comparison to relapsing-remitting patients in remission or to patients with other non-inflammatory neurological diseases. Similarly, in patients with clinically isolated syndrome during their first neurological episode, Th17 cells are more abundant than in clinically isolated syndrome patients with no acute symptoms. Patients with inflammatory neurological diseases other than multiple sclerosis also showed increased frequency of Th17 cells compared to patients with no inflammatory diseases. To assess a potential pathological impact of Th17 cells in disease, we generated T cell clones from the cerebrospinal fluid and peripheral blood of patients with multiple sclerosis. We found that Th17 clones expressed higher basal levels of the activation markers CD5, CD69, CD2 and human leukocyte antigen-DR as well as of the CD28-related family of co-stimulatory molecules, when compared to Th1 clones, and confirmed these findings with ex vivo human T cells. Molecules involved in T cell adhesion to endothelium, such as CD49d, CD6 and the melanoma cell adhesion molecule, were also more abundant on the Th17 than on the Th1 cells. Furthermore, functional assays showed that Th17 clones were more prone than Th1 clones to melanoma cell adhesion molecule-mediated adhesion to endothelial cells, and that Th17 cells had a higher proliferative capacity and were less susceptible to suppression than Th1 cells. Altogether our data suggest that Th17 cells display a high pathogenic potential and may constitute a relevant pathogenic subset in multiple sclerosis.
Healthy adults and neurological patients show unique mobility patterns over the course of their lifespan and disease. Quantifying these mobility patterns could support diagnosing, tracking disease progression and measuring response to treatment. This quantification can be done with wearable technology, such as inertial measurement units (IMUs). Before IMUs can be used to quantify mobility, algorithms need to be developed and validated with age and disease-specific datasets. This study proposes a protocol for a dataset that can be used to develop and validate IMU-based mobility algorithms for healthy adults (18–60 years), healthy older adults (>60 years), and patients with Parkinson’s disease, multiple sclerosis, a symptomatic stroke and chronic low back pain. All participants will be measured simultaneously with IMUs and a 3D optical motion capture system while performing standardized mobility tasks and non-standardized activities of daily living. Specific clinical scales and questionnaires will be collected. This study aims at building the largest dataset for the development and validation of IMU-based mobility algorithms for healthy adults and neurological patients. It is anticipated to provide this dataset for further research use and collaboration, with the ultimate goal to bring IMU-based mobility algorithms as quickly as possible into clinical trials and clinical routine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.