BackgroundMetal-on-metal (MOM) total hip arthroplasties were reintroduced because of the problems with osteolysis and aseptic loosening related to polyethylene wear of early metal-on-polyethylene (MOP) arthroplasties. The volumetric wear rate has been greatly reduced with MOM arthroplasties; however, because of nano-size wear particles, the absolute number has been greatly increased. Thus, a source of metal ion exposure with the potential to sensitize patients is present. We hypothesized that higher amounts of wear particles result in increased release of metal ions and ultimately lead to an increased incidence of metal allergy.Methods52 hips in 52 patients (median age 60 (51–64) years, 30 women) were randomized to either a MOM hip resurfacing system (ReCap) or a standard MOP total hip arthoplasty (Mallory Head/Exeter). Spot urine samples were collected preoperatively, postoperatively, after 3 months, and after 1, 2, and 5 years and tested with inductively coupled plasma-sector field mass spectrometry. After 5 years, hypersensitivity to metals was evaluated by patch testing and lymphocyte transformation assay. In addition, the patients answered a questionnaire about hypersensitivity.ResultsA statistically significant 10- to 20-fold increase in urinary levels of cobalt and chromium was observed throughout the entire follow-up in the MOM group. The prevalence of metal allergy was similar between groups.InterpretationWhile we observed significantly increased levels of metal ions in the urine during the entire follow-up period, no difference in prevalence of metal allergy was observed in the MOM group. However, the effect of long-term metal exposure remains uncertain.
The precision of marker-based RSA was significantly better than model-based RSA. However, problems with occluded markers lead to exclusion of many patients which was not a problem with model-based RSA. HRA were stable at the 5-year follow-up. The detection limit was 0.2 mm TT and 1° TR for marker-based and 0.5 mm TT and 1° TR for CAD model-based RSA for HRA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.