Many vision-based approaches for obstacle detection often state that vertical thin structure is of importance, e.g. poles and trees. However, there are also problem in detecting thin horizontal structures. In an industrial case there are horizontal objects, e.g. cables and fork lifts, and slanting objects, e.g. ladders, that also has to be detected. This paper focuses on the problem to detect thin horizontal structures. We introduce a test apparatus for testing thin objects as a complement for the test pieces for human safety described in the European standard EN 1525 Safety of industrial trucks -Driverless trucks and their systems. The system uses three cameras, situated as a horizontal pair and a vertical pair, which makes it possible to also detect thin horizontal structures. A sparse disparity map based on edges and a dense disparity map is used to identify problems with a trinocular system. Both methods use the Sum of Absolute Difference to compute the disparity maps. Tests show that the proposed trinocular system detects all objects at the test apparatus. If a sparse or dense method is used is not critical. Further work will implement the algorithm in real time and verify it on a final system in many types of scenery.
Human-operated and driverless trucks often collaborate in a mixed work space in industries and warehouses. This is more efficient and flexible than using only one kind of truck. However, because driverless trucks need to give way to driven trucks, a reliable detection system is required. Several challenges exist in the development of such a system. The first is to select interesting situations and objects. Overhanging objects are often found in industrial environments (e.g., tines on a forklift). Second is choosing a system that has the ability to detect those situations. (The traditional laser scanner situated two decimetres above the floor does not detect overhanging objects.) Third is to ensure that the perception system is reliable. A solution used on trucks today is to mount a two-dimensional laser scanner on top and tilt the scanner toward the floor. However, objects at the top of the truck will be detected too late, and a collision cannot always be avoided. Our aim is to replace the upper two-dimensional laser scanner with a three-dimensional camera, structural light, or time-of-flight (TOF) camera. It is important to maximize the field of view in the desired detection volume. Hence, the sensor placement is important. We conducted laboratory experiments to check and compare the various sensors' capabilities for different colors, using tines and a model of a tine in a controlled industrial environment. We also conducted field experiments in a warehouse. Our conclusion is that both the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.