Healthcare, conceivably more than any other area of human endeavour, has the greatest potential to be affected by artificial intelligence (AI). This potential has been shown by several reports that demonstrate equal or superhuman performance in medical tasks that aim to improve efficiency, diagnosis and prognosis. This review focuses on the state of the art of AI applications in cardiovascular imaging. It provides an overview of the current applications and studies performed, including the potential value, implications, limitations and future directions of AI in cardiovascular imaging.
Background Despite the increasing availability of clinical data due to the digitalisation of healthcare systems, data often remain inaccessible due to the diversity of data collection systems. In the Netherlands, Cardiology Centers of the Netherlands (CCN) introduced “one-stop shop” diagnostic clinics for patients suspected of cardiac disease by their general practitioner. All CCN clinics use the same data collection system and standardised protocol, creating a large regular care database. This database can be used to describe referral practices, evaluate risk factors for cardiovascular disease (CVD) in important patient subgroups, and develop prediction models for use in daily care. Construction and content The current database contains data on all patients who underwent a cardiac workup in one of the 13 CCN clinics between 2007 and February 2018 (n = 109,151, 51.9% women). Data were pseudonymised and contain information on anthropometrics, cardiac symptoms, risk factors, comorbidities, cardiovascular and family history, standard blood laboratory measurements, transthoracic echocardiography, electrocardiography in rest and during exercise, and medication use. Clinical follow-up is based on medical need and consisted of either a repeat visit at CCN (43.8%) or referral for an external procedure in a hospital (16.5%). Passive follow-up via linkage to national mortality registers is available for 95% of the database. Utility and discussion The CCN database provides a strong base for research into historically underrepresented patient groups due to the large number of patients and the lack of in- and exclusion criteria. It also enables the development of artificial intelligence-based decision support tools. Its contemporary nature allows for comparison of daily care with the current guidelines and protocols. Missing data is an inherent limitation, as the cardiologist could deviate from standardised protocols when clinically indicated. Conclusion The CCN database offers the opportunity to conduct research in a unique population referred from the general practitioner to the cardiologist for diagnostic workup. This, in combination with its large size, the representation of historically underrepresented patient groups and contemporary nature makes it a valuable tool for expanding our knowledge of cardiovascular diseases. Trial registration: Not applicable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.