Profilins are small proteins that form complexes with G‐actin and phosphoinositides and are therefore considered to link the microfilament system to signal transduction pathways. In addition, they bind to poly‐L‐proline, but the biological significance of this interaction is not yet known. The recent molecular cloning of the vasodilator‐stimulated phosphoprotein (VASP), an established in vivo substrate of cAMP‐ and cGMP‐dependent protein kinases, revealed the presence of a proline‐rich domain which prompted us to investigate a possible interaction with profilins. VASP is a microfilament and focal adhesion associated protein which is also concentrated in highly dynamic regions of the cell cortex. Here, we demonstrate that VASP is a natural proline‐rich profilin ligand. Human platelet VASP bound directly to purified profilins from human platelets, calf thymus and birch pollen. Moreover, VASP and a novel protein were specifically extracted from total cell lysates by profilin affinity chromatography and subsequently eluted either with poly‐L‐proline or a peptide corresponding to a proline‐rich VASP motif. Finally, the subcellular distributions of VASP and profilin suggest that both proteins also interact within living cells. Our data support the hypothesis that profilin and VASP act in concert to convey signal transduction to actin filament formation.
This article outlines the present knowledge of the architecture, molecular composition, and dynamics of focal contacts of adhesive animal cells. These structures, developed at the plasma membrane at sites where cells touch their substratum, are essential for cellular attachment in tissue formation during embryogenesis and wound healing. In tissue culture, they are particularly prominent and thus amenable to detailed investigation. Focal contacts consist of a cytoplasmic face, comprising cytoskeletal elements, a transmembrane connecting region, and a extracellular face composed of proteins of the extracellular matrix. The molecular anatomy of the numerous proteins involved, the basis for classifying them as structural or regulatory components, and their in vitro interactions are described. Based on this information, current models on the dynamics of their assembly and of possible regulatory mechanisms involving a variety of signal transduction pathways are discussed.
The ras genes give rise to a family of related GTP-binding proteins that exhibit potent transforming potential. Mutational activation of Ras proteins promotes oncogenesis by disturbing a multitude of cellular processes, such as gene expression, cell cycle progression and cell proliferation, as well as cell survival, and cell migration. Ras signalling pathways are well known for their involvement in tumour initiation, but less is known about their contribution to invasion and metastasis. This review summarises the role and mechanisms of Ras signalling, especially the role of the Ras effector cascade Raf/MEK/ERK, as well as the phosphatidylinositol 3-kinase/Akt pathway in Ras-mediated transformation and tumour progression. In addition, it discusses the impact of Rho GTPases on Ras-mediated transformation and metastasis.
Convergent extension movements occur ubiquitously in animal development. This special type of cell movement is controlled by the Wnt/planar cell polarity (PCP) pathway. Here we show that Xenopus paraxial protocadherin (XPAPC) functionally interacts with the Wnt/PCP pathway in the control of convergence and extension (CE) movements in Xenopus laevis. XPAPC functions as a signalling molecule that coordinates cell polarity of the involuting mesoderm in mediolateral orientation and thus selectively promotes convergence in CE movements. XPAPC signals through the small GTPases Rho A and Rac 1 and c-jun N-terminal kinase (JNK). Loss of XPAPC function blocks Rho A-mediated JNK activation. Despite common downstream components, XPAPC and Wnt/PCP signalling are not redundant, and the activity of both, XPAPC and PCP signalling, is required to coordinate CE movements
Transforming growth factor (TGF)-β1 promotes progression of pancreatic ductal adenocarcinoma (PDAC) by enhancing epithelial-mesenchymal transition, cell migration/invasion, and metastasis, in part by cooperating with the small GTPase Rac1. Prompted by the observation of higher expression of Rac1b, an alternatively spliced Rac1 isoform, in pancreatic ductal epithelial cells and in patients with chronic pancreatitis vs. PDAC, as well as in long-time vs. short-time survivors among PDAC patients, we asked whether Rac1b might negatively affect TGF-β1 prometastatic function. Interestingly, the non-malignant pancreatic ductal epithelial cell line H6c7 exhibited a higher ratio of active Rac1b to total Rac1b than the TGF-β1-responsive PDAC cell lines Panc-1 and Colo357. Notably, siRNA-mediated silencing of Rac1b increased TGF-β1/Smad-dependent migratory activities in H6c7, Colo357, and Panc-1 cells, while ectopic overexpression of Rac1b in Panc-1 cells attenuated TGF-β1-induced cell motility. Depletion of Rac1b in Panc-1 cells enhanced TGF-β1/Smad-dependent expression of promoter-reporter genes and of the endogenous Slug gene. Moreover, Rac1b depletion resulted in a higher and more sustained C-terminal phosphorylation of Smad3 and Smad2, suggesting that Rac1b is involved in Smad2/3 dephosphorylation/inactivation. Since pharmacologic or siRNA-mediated inhibition of Smad3 but not Smad2 was able to alleviate the Rac1b siRNA effect on TGF-β1-induced cell migration, our results suggests that Rac1b inhibits TGF-β1-induced cell motility in pancreatic ductal epithelial cells by blocking the function of Smad3. Moreover, Rac1b may act as an endogenous inhibitor of Rac1 in TGF-β1-mediated migration and possibly metastasis. Hence, it could be exploited for diagnostic/prognostic purposes or even therapeutically in late-stage PDAC as an antimetastatic agent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.