Potentiometric sensors are the largest and most commonly used group of electrochemical sensors. Among them, ion-selective electrodes hold a prominent place. Since the end of the last century, their re-development has been observed, which is a consequence of the introduction of solid contact constructions, i.e., electrodes without an internal electrolyte solution. Research carried out in the field of potentiometric sensors primarily focuses on developing new variants of solid contact in order to obtain devices with better analytical parameters, and at the same time cheaper and easier to use, which has been made possible thanks to the achievements of material engineering. This paper presents an overview of new materials used as a solid contact in ion-selective electrodes over the past several years. These are primarily composite and hybrid materials that are a combination of carbon nanomaterials and polymers, as well as those obtained from carbon and polymer nanomaterials in combination with others, such as metal nanoparticles, metal oxides, ionic liquids and many others. Composite materials often have better mechanical, thermal, electrical, optical and chemical properties than the original components. With regard to their use in the construction of ion-selective electrodes, it is particularly important to increase the capacitance and surface area of the material, which makes them more effective in the process of charge transfer between the polymer membrane and the substrate material. This allows to obtain sensors with better analytical and operational parameters. Brief characteristics of electrodes with solid contact, their advantages and disadvantages, as well as research methods used to assess their parameters and analytical usefulness were presented. The work was divided into chapters according to the type of composite material, while the data in the table were arranged according to the type of ion. Selected basic analytical parameters of the obtained electrodes have been collected and summarized in order to better illustrate and compare the achievements that have been described till now in this field of analytical chemistry, which is potentiometry. This comprehensive review is a compendium of knowledge in the research area of functional composite materials and state-of-the-art SC-ISE construction technologies.
A new solid-contact ion-selective electrode (ISE) sensitive to lead (II) ions, obtained by modifying a polymer membrane with a nanocomposite of carbon nanofibers and an ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate, is presented. Electrodes with a different amount of nanocomposite in the membrane (0–9% w/w), in which a platinum wire or a glassy carbon electrode was used as an internal electrode, were tested. Potentiometric and electrochemical impedance spectroscopy measurements were carried out to determine the effect of the ion-sensitive membrane modification on the analytical and electrical parameters of the ion-selective electrode. It was found that the addition of the nanocomposite causes beneficial changes in the properties of the membrane, i.e., a decrease in resistance and an increase in capacitance and hydrophobicity. As a result, the electrodes with the modified membrane were characterized by a lower limit of detection, a wider measuring range and better selectivity compared to the unmodified electrode. Moreover, a significant improvement in the stability and reversibility of the electrode potential was observed, and additionally, they were resistant to changes in the redox potential of the sample. The best parameters were shown by the electrode obtained with the use of a platinum wire as the inner electrode with a membrane containing 6% of the nanocomposite. The electrode exhibited a Nernstian response to lead ions over a wide concentration range, 1.0 × 10−8–1.0 × 10−2 mol L−1, with a slope of 31.5 mV/decade and detection limit of 6.0 × 10−9 mol L−1. In addition, the proposed sensor showed very good long term stability and worked properly 4 months after its preparation without essential changes in the E0 or slope values. It was used to analyze a real sample and correct results of lead content determination were obtained.
In this paper, ion-selective electrodes sensitive to copper(II) ions are presented, in which new composite, synthesized from copper(II) oxide nanoparticles (CuONPs) and multi-walled carbon nanotubes (MWCNTs), was used as a solid contact. For comparison, electrodes obtained using separate components of the nanocomposite, i.e., CuONPs and MWCNTs, as well as unmodified electrodes, were also studied. The tested nanomaterials have been applied in two ways: as an intermediate layer placed between the ion-sensitive membrane and the internal electrode, and as an additional component of the ion-selective membrane mixture. To investigate the influence of the electrode’s structure modification, the selected analytical parameters obtained by potentiometric measurements (slope, linearity range, detection limit, potential stability, and reversibility) and electrochemical impedance spectroscopy measurements (membrane resistance and charge transfer resistance as well as double layer capacitance) were determined and compared. It was found that the use of all nanomaterials improves the properties of the electrodes, with the effect being the strongest for electrodes modified with the CuO-MWCNTs nanocomposite. The nanocomposite-based electrodes, both those with an intermediate layer and those with a nanocomposite-modified membrane, showed a Nernstian slope of the characteristic, a wider working range and a lower detection limit compared to unmodified electrodes. Moreover, application of all nanomaterials, especially nanocomposite resulted in improvement of both, stability and reversibility of the sensor potential. Modification of the electrodes did not make them sensitive to changing external measurement conditions (lighting, presence of gasses, redox potential). The electrode with the best parameters (based on nanocomposite) was successfully used to determine the Cu2+ ions content in tap water and mineral water, obtaining satisfactory results.
Use of the nanocomposite of chloride-doped polyaniline nanofibers and multiwalled carbon nanotubes (PANINFs-Cl:MWCNTs) for construction of ion-selective electrodes with solid-contact sensitive to chloride ions has been described. Many types of electrodes were tested, differing in the quantitative and qualitative composition of the layer placed between the electrode material and the ion-selective membrane. Initial tests were carried out, including tests of electrical properties of intermediate solid-contact layers. The obtained ion-selective electrodes had a theoretical slope of the electrode characteristic curve (−61.3 mV dec−1), a wide range of linearity (5 × 10−6–1 × 10−1 mol L−1) and good potential stability resistant to changing measurement conditions (redox potential, light, oxygen). The chloride contents in the tap, mineral and river water samples were successfully determined using the electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.