Fullerenes have been long investigated for application as singlet oxygen sources. Even though they possess high photosensitizing efficiency, their practical use is still limited, mostly because of insufficient absorption of visible and/or near-infrared light. This limitation can be overcome by introducing organic chromophores that absorb longer-wavelength light, either by covalent attachment to C60 or by its encapsulation in a polymeric matrix. In this work, we investigated the photosensitizing properties of the C60 molecule functionalized with organic units comprising thiophene or selenophene rings. The chemical structures of the synthesized dyads were characterized by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. The influence of the S/Se atoms and vinyl linkage between the organic unit and C60 on the absorptive and emissive properties of the dyads was investigated and correlated with their photosensitizing activity. For the latter, we used a standard chemical singlet oxygen trap. A selected dyad C60ThSe2 was also applied as a source of singlet oxygen in a model photocatalyzed synthesis of the fine chemical juglone from 1,5-dihydroxynapthalene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.