Hyperaccumulators' ability to take up large quantities of harmful heavy metals from contaminated soils and store them in their foliage makes them promising organisms for bioremediation. Here we demonstrate that some ecotypes of the zinc hyperaccumulator Arabidopsis halleri are more suitable for bioremediation than others, because of their distinct influence on soil biota. In a field experiment, populations originating from metal‐polluted and unpolluted soils were transplanted to a highly contaminated metalliferous site in Southern Poland. Effects of plant ecotypes on soil biota were assessed by measurements of feeding activity of soil fauna (bait‐lamina test) and catabolic activity and functional diversity of soil bacteria underneath A. halleri plants (Biolog® ECO plates). Chemical soil properties, plant morphological parameters, and zinc concentration in shoots and roots were additionally evaluated. Higher soil fauna feeding activity and higher bacterial community functional diversity were found in soils affected by A. halleri plants originating from metallicolous compared to non‐metallicolous ecotypes. Differences in community‐level physiological profiles further evidenced changes in microbial communities in response to plant ecotype. These soil characteristics were positively correlated with plant size. No differences in zinc content in shoots and roots, zinc translocation ratio, and plant morphology were observed between metallicolous and non‐metallicolous plants. Our results indicate strong associations between A. halleri ecotype and soil microbial community properties. In particular, the improvement of soil biological properties by metallicolous accessions should be further explored to optimize hyperaccumulator‐based bioremediation technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.