In this study, we present a validated Geant4 Monte Carlo simulation model of the Dingo thermal neutron imaging beamline at the Australian Centre for Neutron Scattering. The model, constructed using CAD drawings of the entire beam transport path and shielding structures, is designed to precisely predict the in-beam neutron field at the position at the sample irradiation stage. The model’s performance was assessed by comparing simulation results to various experimental measurements, including planar spatial thermal neutron distribution obtained in-beam using gold foil activation and 10B4C-coated microdosimeters and the out-of-beam neutron spectra measured with Bonner spheres. The simulation results demonstrated that the predicted neutron fluence at the field’s centre is within 8.1% and 2.1% of the gold foil and 10B4C-coated microdosimeter measurements, respectively. The logarithms of the ratios of average simulated to experimental fluences in the thermal (Eth < 0.414 eV), epithermal (0.414 eV < Eepi < 11.7 keV) and fast (Efast > 11.7 keV) spectral regions were approximately -0.03 to +0.1, -0.2 to +0.15, and -0.4 to +0.2, respectively. Furthermore, the predicted thermal, epithermal and fast neutron components in-beam at the sample stage position constituted approximately 18%, 64% and 18% of the total neutron fluence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.