Poly(p-phenylene vinylene)s (PPVs) have been studied for decades, but new applications like in bioimaging keep emerging and even simple structural variations are still waiting to be explored, as we highlight by this work.
Poly(p-phenylene vinylene)s (PPVs) have been studied for decades, but research on this interesting class of conjugated polymers is far from being completed. New applications like in bioimaging keep emerging and even simple structural variations are still waiting to be explored. Surprisingly, not even dithioalkyl-substituted PPVs (S-PPVs) have been reported in the peer-reviewed literature, although the corresponding dialkoxy-substituted PPVs (O-PPVs) like MEH-PPV or MDMO-PPV are most frequently used and although thioalkyl substituents can improve the material properties significantly. We herein report the development of a highly efficient, scalable two-step synthesis of Gilch monomers for S-PPVs starting from low-cost 1,4-diiodobenzene. A low-temperature polymerization protocol has been developed for these monomers, affording high-molecular weight S-PPVs in excellent yields. The thermal, electrochemical, and photophysical properties of S-PPVs are reported to highlight the potential of these polymers. Furthermore, treatment with dimethyldioxirane is demonstrated to result in rapid conversion into sulfone-substituted PPVs (SO<sub>2</sub>-PPVs), introducing a route to high-molecular weight SO<sub>2</sub>-PPVs with exceptional stability and solid-state photoluminescence quantum yields of up to 0.46.
Poly(p-phenylene vinylene)s (PPVs) have been studied for decades, but research on this interesting class of conjugated polymers is far from being completed. New applications like in bioimaging keep emerging and even simple structural variations are still waiting to be explored. Surprisingly, not even dithioalkyl-substituted PPVs (S-PPVs) have been reported in the peer-reviewed literature, although the corresponding dialkoxy-substituted PPVs (O-PPVs) like MEH-PPV or MDMO-PPV are most frequently used and although thioalkyl substituents can improve the material properties significantly. We herein report the development of a highly efficient, scalable two-step synthesis of Gilch monomers for S-PPVs starting from low-cost 1,4-diiodobenzene. A low-temperature polymerization protocol has been developed for these monomers, affording high-molecular weight S-PPVs in excellent yields. The thermal, electrochemical, and photophysical properties of S-PPVs are reported to highlight the potential of these polymers. Furthermore, treatment with dimethyldioxirane is demonstrated to result in rapid conversion into sulfone-substituted PPVs (SO<sub>2</sub>-PPVs), introducing a route to high-molecular weight SO<sub>2</sub>-PPVs with exceptional stability and solid-state photoluminescence quantum yields of up to 0.46.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.