Communication complexity has al~vays been an important issue Ivhen designing group key distribution systems. This paper systematically studies \vhat can be achieved for the most common measures of protocol complexity.Lo\ver bounds for the total number of messages, the total number of exchanges, and the number of necwsary rounds are established,~vherebymodels that allo~vbroadcasting have to be distinguished from those that do not. For every measure of protocol complexity, we furthermore show that the corresponding bound is realistic for DiffieHellmau-based protC OIS by referring to or introducing protocols that match the bound or exceed it by only one.
In the last couple of years software functionality of modern cars increased dramatically. This growing functionality leads directly to a higher complexity of development and configuration. Current studies show that the amount of software will continue to grow. Additionally, advanced driver assistance systems (ADAS) and autonomous functionality, such as highly and fully automated driving or parking, will be introduced. Many of these new functions require access to different communication domains within the car, which increases system complexity. AUTOSAR, the software architecture established as a standard in the automotive domain, provides no methodologies to reduce this kind of complexity and to master new challenges. One solution for these evolving systems is developed in the RACE project. Here, a centralized platform computer (CPC) is introduced, which is inspired by the well-established approach used in other domains like avionics and automation. The CPC establishes a generic safety-critical execution environment for applications, providing interfaces for test and verification as well as a reliable communication infrastructure to smart sensors and actuators. A centralized platform also significantly reduces the complexity of integration and verification of new applications, and enables the support for Plug&Play.
International audienceRuntime verification (RV) is a successful technique to monitor system behavior at runtime and potentially take compensating actions in case of deviation from a specification. For the usage in safety critical systems the question of reliability of RV components arises since in existing approaches RV components are not verified and may themselves be erroneous. In this paper, we present work towards a framework for certified RV components. We present a solution for implementations of transition functions of RV monitors and prove them correct using the Coq proof assistant. We extract certified executable OCaml code and use it inside RV monitors. We investigate an application scenario in the domain of automotive embedded systems and present performance evaluation for some monitored properties
Abstract-The automotive domain is challenged by the increasing importance of Information Technology (IT) based functions. To show the possibilities of modern IT systems, a demonstrator car was developed in RACE (Robust and Reliant Automotive Computing Environment for Future eCars) based on a completely redesigned E/E architecture, which supports the integration of mixed-criticality components and offers features like Plug&Play. This paper presents the architecture and components of this vehicle prototype, which is equipped with modern systems such as Steer-by-Wire without mechanical fallback. It was designed to support future driver assistance systems, e.g. to carry out autonomous parking maneuvers onto an inductive charging station, a task, which is hard to achieve accurately enough for a human driver. Therefore, a special emphasis lies on the description of the sensor set for automated operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.