Promotion of cell adhesion on biomaterials is crucial for the long-term success of a titanium implant. Herein a novel concept is highlighted combining very stable and affine titanium surface adhesive properties with specific cell binding moieties in one molecule. A peptide containing L-3,4-dihydroxyphenylalanine was synthesized and affinity to titanium was investigated. Modification with a cyclic RGD peptide and a heparin binding peptide (HBP) was realized by an efficient on-resin combination of Diels-Alder reaction with inverse electron demand and Cu(I) catalyzed azide-alkyne cycloaddition. The peptide was fluorescently labeled by thiol Michael addition. Conjugating the cyclic RGD and HBP in one peptide gave improved spreading, proliferation, viability, and the formation of well-developed actin cytoskeleton and focal contacts of osteoblast-like cells.
Hormone-refractory prostate cancer (HRPC), insensitive to most cytostatic interventions, features low response rates and bad prognosis. Studies with HRPC treated with temozolomide (TMZ) showed a poor response and the results were discouraging. Therefore, TMZ has been considered to be ineffective for the treatment of patients with symptomatic and progressive HRPC. A solution to this problem is demonstrated in this study by combining proper solid-phase peptide synthesis and a chemoselective new 'click' chemistry based on the Diels-Alder reaction with 'inverse-electron-demand' (DAR(inv)) for the construction of a highly efficient TMZ-BioShuttle in which TMZ is ligated to transporter and subcellular address molecules. The transport to the targeted nuclei resulted in much higher efficiency and better pharmacological effects. The reformulation of TMZ to TMZ-BioShuttle achieved higher in vitro killing of prostate cancer cells. Accordingly, the potential of TMZ for the treatment of prostate tumors was dramatically enhanced even in a tenfold lower concentration than applied normally. This TMZ-BioShuttle may be well suited for combining chemotherapy with other cytostatic agents or radiation therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.