An original serie of 12-to 22-residue-long peptides was developed, they are only constituted by apolar Leu and charged Lys residues periodically located in the sequence in order to generate ideal highly amphipathic a-he&s. By circular dichroism, the peptides are proven to be mainly a-helical in organic and aqueous solvents and in the presence of lipids. The peptides are highly hemolytic, their activity varies according to the peptide length. The IS-, 20-, and 22-residue-long-peptides have LD,, -5 x lo-' M for IO'erythrocytes, i.e. they are 5-10 times more active than melittin, and are indeed several orders of magnitude more active than magainin or mastoparan.
In a minimalist approach to modeling lytic toxins, amphipathic peptides of LiKj with i=2j composition and whose length varies from 5 to 22 residues were studied for their ability to induce hemolysis and lipid vesicle leakage. Their sequences were designed to generate ideally amphipathic alpha helices with a single K residue per putative turn. All the peptides were lytic, their activities varying by more than a factor of 103 from the shortest 5-residue-long peptide (5-mer) to the longest 22-mer. However, there was no monotonous increase versus length. The 15-mer was as active as the 22-mer and even more than melittin which is used as standard. Partition coefficients from the buffer to the membrane increased in relation to length up to 12 residues, then weakly decreased to reach a plateau, while they were expected to increase monotonously with peptide length and hydrophobicity as revealed from HPLC retention times. Fluorescence labeling by a dansyl group at the N-terminus, or by a W near the CO-terminus, show that up to 12 residues, the peptides were essentially monomeric while longer peptides strongly aggregated in the solution. Lipid affinity was then controlled by peptide length and was found to be limited by folding and self-association in buffer. The lytic activity resulted both from lipid affinity, which varied by a factor of 20-fold, and from efficiency in disturbing the membrane when bound, the latter steeply and monotonously increasing with length. The 15-residue-long peptide, KLLKLLLKLLLKLLK, had the optimal size for highest lytic activity. The shallow location of the fluorescent labels in the lipids is further evidence for a model of peptides remaining flat at the interface.
Reversed-phase high performance liquid chromatography (RP HPLC) has been found to be a convenient and powerful tool for the study of the secondary structure of peptides. Here, the ability of proline to perturb the secondary structures of peptides induced at aqueous-lipid interfaces and the induced conformation of polyproline peptides were investigated by means of RP HPLC. For these studies, four different complete sets of substitution analogues of model peptides expected to have specific induced conformations were used. In the first two studies, a single lysine was "walked" through two 18-residue polyproline sequences (one N-acetylated, the other not). In the remaining two studies, a proline was "walked" through two different sequences that had been found earlier to be induced into an alpha-helical conformation during RP HPLC (an 18-residue polyalanine sequence and the amphipathic 14-residue sequence Ac-LLKLLKKLLKKLKK-NH2). Sixty-eight individual analogues were synthesized for this study and the effect of the respective substitutions on retention times was determined. The results are consistent with the concept that, upon interaction with the C-18 of the stationary phase during RP HPLC, polyproline is induced into a type II helical conformation, polyalanine into an alpha-helical conformation, and Ac-LLKLLKKLLKKLKK-NH2 into an amphipathic alpha-helical array. In an extension of this study, the antimicrobial activities of Ac-LLKLLKKLLKKLKK-NH2 and its 18 proline substitution analogues were found to be inversely correlated with their RP HPLC retention times.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.