Significance
We report the presence of a previously unidentified cholinergic, polymodal chemosensory cell in the mammalian urethra, the potential portal of entry for bacteria and harmful substances into the urogenital system. These cells exhibit structural markers of respiratory chemosensory cells (“brush cells”). They use the classical taste transduction cascade to detect potential hazardous compounds (bitter, umami, uropathogenic bacteria) and release acetylcholine in response. They lie next to sensory nerve fibers that carry acetylcholine receptors, and placing a bitter compound in the urethra enhances activity of the bladder detrusor muscle. Thus, monitoring of urethral content is linked to bladder control via a previously unrecognized cell type.
Highlights d Tracheal chemosensory cells recognize virulence-associated formyl peptides d This activates a TRPM5-dependent pathway, triggering acetylcholine release d Acetylcholine released from chemosensory cells activates mucociliary clearance d Mice with genetic impairment of this pathway are more susceptible to infection
Specialized epithelial cells with a tuft of apical microvilli (“brush cells”) sense luminal content and initiate protective reflexes in response to potentially harmful substances. They utilize the canonical taste transduction cascade to detect “bitter” substances such as bacterial quorum-sensing molecules. In the respiratory tract, most of these cells are cholinergic and are approached by cholinoceptive sensory nerve fibers. Utilizing two different reporter mouse strains for the expression of choline acetyltransferase (ChAT), we observed intense labeling of a subset of thymic medullary cells. ChAT expression was confirmed by in situ hybridization. These cells showed expression of villin, a brush cell marker protein, and ultrastructurally exhibited lateral microvilli. They did not express neuroendocrine (chromogranin A, PGP9.5) or thymocyte (CD3) markers but rather thymic epithelial (CK8, CK18) markers and were immunoreactive for components of the taste transduction cascade such as Gα-gustducin, transient receptor potential melastatin-like subtype 5 channel (TRPM5), and phospholipase Cβ2. Reverse transcription and polymerase chain reaction confirmed the expression of Gα-gustducin, TRPM5, and phospholipase Cβ2. Thymic “cholinergic chemosensory cells” were often in direct contact with medullary epithelial cells expressing the nicotinic acetylcholine receptor subunit α3. These cells have recently been identified as terminally differentiated epithelial cells (Hassall’s corpuscle-like structures in mice). Contacts with nerve fibers (identified by PGP9.5 and CGRP antibodies), however, were not observed. Our data identify, in the thymus, a previously unrecognized presumptive chemosensitive cell that probably utilizes acetylcholine for paracrine signaling. This cell might participate in intrathymic infection-sensing mechanisms.
The synthesis of the recently characterized depsipeptide szentiamide (1), which is produced by the entomopathogenic bacteriumXenorhabdus szentirmaii, is described. Whereas no biological activity was previously identified for1, the material derived from the efficient synthesis enabled additional bioactivity tests leading to the identification of a notable activity against insect cells andPlasmodium falciparum, the causative agent of malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.