Vav is a crucial regulator of TCR-mediated Ca2+ flux, cytoskeletal reorganization and TCR clustering, and these are required for T-cell maturation, interleukin-2 production and cell cycle progression.
During lymphocyte development, cellular proliferation and positive and negative selection events ensure the production of T and B lymphocytes bearing highly diverse, but self-tolerant, repertoires of antigen receptors. These processes are initiated when engagement of growth-factor receptors, or the T and B lymphocyte antigen receptors, induces tyrosine phosphorylation of specific SH2- and SH3-domain-containing cytoplasmic proteins, including Vav. Here we show that vav-/- embryonic stem cells generate only limited numbers of immature and mature T and B lymphocytes in the RAG-2 blastocyst complementation assay. Furthermore, Vav-deficient T lymphocytes showed severely impaired antigen receptor signalling. Finally, we demonstrate that Vav-dependent signalling pathways regulate maturation, but not CD4/CD8 lineage commitment, during T-cell-receptor-mediated positive selection of immature CD4+ CD8+ precursors into mature CD4+ CD8- or CD4- CD8+ T cells.
Preeclampsia (PE) is a placenta-induced inflammatory disease associated with maternal and fetal morbidity and mortality. The mechanisms underlying PE remain enigmatic and delivery of the placenta is the only known remedy. PE is associated with coagulation and platelet activation and increased extracellular vesicle (EV) formation. However, thrombotic occlusion of the placental vascular bed is rarely observed and the mechanistic relevance of EV and platelet activation remains unknown. Here we show that EVs induce a thromboinflammatory response specifically in the placenta. Following EV injection, activated platelets accumulate particularly within the placental vascular bed. EVs cause adenosine triphosphate (ATP) release from platelets and inflammasome activation within trophoblast cells through purinergic signaling. Inflammasome activation in trophoblast cells triggers a PE-like phenotype, characterized by pregnancy failure, elevated blood pressure, increased plasma soluble fms-like tyrosine kinase 1, and renal dysfunction. Intriguingly, genetic inhibition of inflammasome activation specifically in the placenta, pharmacological inhibition of inflammasome or purinergic signaling, or genetic inhibition of maternal platelet activation abolishes the PE-like phenotype. Inflammasome activation in trophoblast cells of women with preeclampsia corroborates the translational relevance of these findings. These results strongly suggest that EVs cause placental sterile inflammation and PE through activation of maternal platelets and purinergic inflammasome activation in trophoblast cells, uncovering a novel thromboinflammatory mechanism at the maternal-embryonic interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.