Engagement of the T cell receptor complex reprograms T cells for proliferation, cytokine production and differentiation towards effector cells. This process depends on activating costimulatory signals and is counteracted by coinhibitory molecules. Three transcription factors, namely NF-κB, NFAT and AP-1, have a major role in inducing the transcriptional program that is required for T cell activation and differentiation. Here we describe the generation of a triple parameter reporter based on the human Jurkat T cell line, where response elements for NF-κB, NFAT and AP-1 drive the expression of the fluorescent proteins CFP, eGFP and mCherry, respectively. The emission spectra of these proteins allow simultaneous assessment of NF-κB, NFAT and AP-1 activity in response to stimulation. Ligation of the TCR complex induced moderate reporter activity, which was strongly enhanced upon coengagement of the costimulatory receptors CD2 or CD28. Moreover, we have generated and tested triple parameter reporter cells that harbor costimulatory and inhibitory receptors not endogenously expressed in the Jurkat cells. In these experiments we could show that engagement of the costimulatory molecule 4-1BB enhances NF-κB and AP-1 activity, whereas coinhibition via PD-1 or BTLA strongly reduced the activation of NF-κB and NFAT. Engagement of BTLA significantly inhibited AP-1, whereas PD-1 had little effect on the activation of this transcription factor. Our triple parameter reporter T cell line is an excellent tool to assess the effect of costimulatory and coinhibitory receptors on NF-κB, NFAT and AP-1 activity and has a wide range of applications beyond the evaluation of costimulatory pathways.
Mastocytosis is a hematopoietic neoplasm characterized by expansion of KIT D816V-mutated clonal mast cells in various organs and severe or even life-threatening anaphylactic reactions. Recently, hereditary α-tryptasemia (HαT) has been described as a common genetic trait with increased copy numbers of the α-tryptase encoding gene, TPSAB1, and associated with an increased basal serum tryptase level and a risk of mast cell activation. The purpose of our study was to elucidate the clinical relevance of HαT in patients with mastocytosis. TPSAB1 germline copy number variants were assessed by digital PCR in 180 mastocytosis patients, 180 sex-matched control subjects, 720 patients with other myeloid neoplasms, and 61 additional mastocytosis patients of an independent validation cohort. α-tryptase encoding TPSAB1 copy number gains, compatible with HαT, were identified in 17.2% of mastocytosis patients and 4.4% of the control population (p<0.001). Patients with HαT exhibited higher tryptase levels than patients without HαT (median tryptase in HαT+ cases: 49.6 ng/mL vs. HαT- cases: 34.5 ng/mL, p=0.004) independent of the mast cell burden. Hymenoptera venom hypersensitivity reactions and severe cardiovascular mediator-related symptoms/anaphylaxis were by far more frequently observed in mastocytosis patients with HαT than in those without HαT. Results were confirmed in an independent validation cohort. The high prevalence of HαT in mastocytosis hints at a potential pathogenic role of germline α-tryptase encoding TPSAB1 copy number gains in disease evolution. Together, our data suggest that HαT is a novel emerging robust biomarker in mastocytosis that is useful for determining the individual patient´s risk of developing severe anaphylaxis.
Inhibition of Janus-kinase 1/2 (JAK1/2) is a mainstay to treat myeloproliferative neoplasms (MPN). Sporadic observations reported the co-incidence of B-cell non-Hodgkin lymphomas during treatment of MPN with JAK1/2 inhibitors. We assessed 626 patients with MPN, including 69 with myelofibrosis receiving JAK1/2 inhibitors for lymphoma development. B-cell lymphomas evolved in 4 (5.8%) of 69 patients receiving JAK1/2 inhibition compared with 2 (0.36%) of 557 with conventional treatment (16-fold increased risk). A similar 15-fold increase was observed in an independent cohort of 929 patients with MPN. Considering primary myelofibrosis only (N = 216), 3 lymphomas were observed in 31 inhibitor-treated patients (9.7%) vs 1 (0.54%) of 185 control patients. Lymphomas were of aggressive B-cell type, extranodal, or leukemic with high MYC expression in the absence of V617F or other MPN-associated mutations. Median time from initiation of inhibitor therapy to lymphoma diagnosis was 25 months. Clonal immunoglobulin gene rearrangements were already detected in the bone marrow during myelofibrosis in 16.3% of patients. Lymphomas occurring during JAK1/2 inhibitor treatment were preceded by a preexisting B-cell clone in all 3 patients tested. Sequencing verified clonal identity in 2 patients. The effects of JAK1/2 inhibition were mirrored in mice: 16 of 24 mice developed a spontaneous myeloid hyperplasia with the concomitant presence of aberrant B cells. Transplantations of bone marrow from diseased mice unmasked the outgrowth of a malignant B-cell clone evolving into aggressive B-cell leukemia-lymphoma. We conclude that JAK/STAT1 pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a preexisting B-cell clone may identify individuals at risk.
Naturally occurring CD4(+)CD25(high) forkhead box protein 3 (FOXP3)(+) regulatory T cells (nTregs) are key mediators of immunity, which orchestrate and maintain tolerance to self and foreign antigens. In the recent 1.5 decades, a multitude of studies have aimed to define the phenotype and function of nTregs and to assess their therapeutic potential for modulating immune mediated disorders such as autoimmunity, allergy, and episodes of transplant rejection. In this review, we summarize the current knowledge on the biology of nTregs. We address the exact definition of nTregs by specific markers and combinations thereof, which is a prerequisite for the state-of-the-art isolation of defined nTreg populations. Furthermore, we discuss the mechanism by which nTregs mediate immunosuppression and how this knowledge might translate into novel therapeutic modalities. With first clinical studies of nTreg-based therapies being finished, questions concerning the reliable sources of nTregs are becoming more and more eminent. Consequently, approaches allowing conversion of CD4(+) T cells into nTregs by coculture with antigen-presenting cells, cytokines, and/or pharmacological agents are discussed. In addition, genetic engineering approaches for the generation of antigen-specific nTregs are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.