Two symmetrically arranged detachment systems delimit the central Menderes metamorphic core complex and define a bivergent continental breakaway zone in the Anatolide belt of western Turkey. Structural analysis and apatite fission-track thermochronology show that a large east-trending syncline within the Alpine nappe stack in the central part of the orogen is related to late Miocene-early Pliocene to recent core-complex formation. The syncline formed as a result of two opposite-facing rolling hinges in the footwalls of each of the two detachments. Back-rotation of the syncline limbs suggests that the detachments rotated from an initial dip of 40؇-60؇ to a currently shallow orientation of 0؇-20؇.
Based on lithostratigraphic comparisons the Menderes Massif has been correlated with the Cycladic Massif, thereby implying that the eastern Mediterranean consists of a narrow pre-Alpine basement belt which is laterally continuous over a long distance and which experienced a similar Alpine orogenic history. Our work indicates that the architecture, the age of basement and the pre-Alpine and Alpine tectonometamorphic history of both massifs differ fundamentally from each other. The Menderes Massif consists of remnants of the Cycladic Massif which overly an exotic unit, the Menderes nappes. Both massifs do not represent lateral continuations which has implications for palaeogeographic reconstructions.
-Thermochronological data reveal that the Late Cretaceous-Tertiary nappe pile of the Anatolide belt of western Turkey displays a two-stage cooling history. Three crustal segments differing in structure and cooling history have been identified. The Central Menderes metamorphic core complex represents an 'inner' axial segment of the Anatolide belt and exposes the lowest structural levels of the nappe pile, whereas the two 'outer' submassifs, the Gördes submassif to the north and the Ç ine submassif to the south, represent higher levels of the nappe pile. A regionally significant phase of cooling in the Late Oligocene and Early Miocene affected the outer two submassifs and the upper structural levels of the Central Menderes metamorphic core complex. In the northern part of the Gördes submassif, cooling was related to top-to-the-NNE movement on the Simav detachment, as the apatite fission-track ages show a northward-younging trend in the direction of movement on this detachment. In the Ç ine submassif, relatively rapid cooling in Late Oligocene and Early Miocene times may have been related to top-to-the-S extensional reactivation of the basal thrust of the overlying Lycian nappes. The second phase of cooling in the Anatolide belt is related to Pliocene to Recent extension resulting in the formation of the Central Menderes metamorphic core complex in the inner part of the Anatolide belt. Core-complex development caused the formation of supra-detachment graben, which document the ongoing separation of the Central Menderes metamorphic core complex from the outer submassifs.
Structural, metamorphic, and geochronologic work shows that the Ampelos/Dilek nappe of the Cycladic blueschist unit in the eastern Aegean constitutes a wedge of high-pressure rocks extruded during early stages of orogeny. The extrusion wedge formed during the incipient collision of the Anatolian microcontinent with Eurasia when subduction and deep underthrusting ceased and the Ampelos/Dilek nappe was thrust southward over the greenschist-facies Menderes nappes along its lower tectonic contact, the Cycladic-Menderes thrust, effectively cutting out a ∼30- to 40-km-thick section of crust. The upper contact of the Ampelos/Dilek extrusion wedge is the top-to-the-NE Selçuk normal shear zone, along which the Ampelos/Dilek nappe was exhumed by ∼3040 km. Detailed Rb-Sr and 40Ar/39Ar dating of mylonites demonstrates that both shear zones operated between 42 and 32 Ma. There is no evidence for episodic motion during the ∼10 Myr life span of the shear zones, suggesting that both shear zones operated in a steady, nonepisodic fashion. Our data provide supporting evidence that simultaneous thrust-type and normal sense shearing can accomplish the early exhumation of deep-seated rock
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.