Glucocorticoids have complex effects on human surfactant protein (SP) SP-A1 and SP-A2 gene expression that occur at both transcriptional and post-transcriptional levels. In the lung adenocarcinoma cell line NCI-H441, dexamethasone causes a dose-dependent decrease in total SP-A mRNA levels and inhibits SP-A gene transcription. In this study, a deletional analysis of the SP-A1 promoter was performed in order to identify cisacting elements that mediate dexamethasone responsiveness in NCI-H441 cells. The region k32\j63 relative to the start of SP-A1 transcription mediated both basal promoter activity and dexamethasone repression of transcription. Removal of the
Surfactant protein (SP)-B is expressed in a cell-specific manner and is essential for surfactant function and survival. Abnormal surfactant function occurs in humans and genetically engineered mice with SP-B levels well below 50% of normal. SP-B mRNA levels vary in fetal lung explants among individuals, possibly due to genetic variety. Polymorphisms within the SP-B gene have been described extensively; however, some of their functional relevance remains unclear. Mutations within the SP-B gene may affect mRNA content, but altered gene transcription or mRNA-stability has not been clearly demonstrated. We characterized a single nucleotide polymorphism (SNP) found in the upstream enhancer of SP-B, consisting of a single base pair change in the consensus sequence of the most downstream-located thyroid transcription factor 1 binding element in the upstream enhancer of the SP-B 5'-flanking region and located at position 384 upstream of the transcriptional start site of the SP-B gene. In a small patient population (n = 53) we found 70% were homozygous for the wild type (WT), one individual (2%) was homozygous for the polymorphism (Pm), and 28% were heterozygous. To further elucidate possible functions we performed electromobility shift assays with extracts from H441 cells that showed a reduced binding affinity of the mutated sequence compared with WT. In reporter gene assays the Pm caused a reduction of 53% in transcriptional activity compared with WT in transfected H441 cells. Stimulation of these constructs with retinoic acid resulted in enhanced reporter gene activity of both constructs. After stimulation the Pm still exhibited a reduced activity compared with the WT sequence. We conclude that the described SNP causes differences in SP-B transcriptional activity and thus may contribute to individually different SP-B mRNA levels.
Glucocorticoids have complex effects on human surfactant protein (SP) SP-A1 and SP-A2 gene expression that occur at both transcriptional and post-transcriptional levels. In the lung adenocarcinoma cell line NCI-H441, dexamethasone causes a dose-dependent decrease in total SP-A mRNA levels and inhibits SP-A gene transcription. In this study, a deletional analysis of the SP-A1 promoter was performed in order to identify cis-acting elements that mediate dexamethasone responsiveness in NCI-H441 cells. The region -32/+63 relative to the start of SP-A1 transcription mediated both basal promoter activity and dexamethasone repression of transcription. Removal of the region +18/+63 abolished dexamethasone responsiveness, indicating that sequences within this region are necessary for the inhibitory effect. Furthermore, the region -32/+63 formed a sequence-specific DNA-protein complex with NCI-H441 nuclear extract. This DNA-protein complex was induced by dexamethasone exposure and its formation was mediated partially by sequences within the region +26/+63.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.