Traditionally, concepts are conceived as abstract mental entities distinct from perceptual or motor brain systems. However, recent results let assume modality-specific representations of concepts. The ultimate test for grounding concepts in perception requires the fulfillment of the following four markers: conceptual processing during (1) an implicit task should activate (2) a perceptual region (3) rapidly and (4) selectively. Here, we show using functional magnetic resonance imaging and recordings of event-related potentials, that acoustic conceptual features recruit auditory brain areas even when implicitly presented through visual words. Fulfilling the four markers, the findings of our study unequivocally link the auditory and conceptual brain systems: recognition of words denoting objects, for which acoustic features are highly relevant (e.g.,"telephone"), ignited cell assemblies in posterior superior and middle temporal gyri (pSTG/ MTG) within 150 ms that were also activated by sound perception. Importantly, activity within a cluster of pSTG/MTG increased selectively as a function of acoustic, but not of visual and action-related feature relevance. The implicitness of the conceptual task, the selective modulation of left pSTG/MTG activity by acoustic feature relevance, the early onset of this activity at 150 ms and its anatomical overlap with perceptual sound processing are four markers for a modality-specific representation of auditory conceptual features in left pSTG/ MTG. Our results therefore provide the first direct evidence for a link between perceptual and conceptual acoustic processing. They demonstrate that access to concepts involves a partial reinstatement of brain activity during the perception of objects.
Flow refers to a positive, activity-associated, subjective experience under conditions of a perceived fit between skills and task demands. Using functional magnetic resonance perfusion imaging, we investigated the neural correlates of flow in a sample of 27 human subjects. Experimentally, in the flow condition participants worked on mental arithmetic tasks at challenging task difficulty which was automatically and continuously adjusted to individuals' skill level. Experimental settings of "boredom" and "overload" served as comparison conditions. The experience of flow was associated with relative increases in neural activity in the left anterior inferior frontal gyrus (IFG) and the left putamen. Relative decreases in neural activity were observed in the medial prefrontal cortex (MPFC) and the amygdala (AMY). Subjective ratings of the flow experience were significantly associated with changes in neural activity in the IFG, AMY, and, with trend towards significance, in the MPFC. We conclude that neural activity changes in these brain regions reflect psychological processes that map on the characteristic features of flow: coding of increased outcome probability (putamen), deeper sense of cognitive control (IFG), decreased self-referential processing (MPFC), and decreased negative arousal (AMY).
Traditionally, concepts are assumed to be situational invariant mental knowledge entities (conceptual stability), which are represented in a unitary brain system distinct from sensory and motor areas (amodality). However, accumulating evidence suggests that concepts are embodied in perception and action in that their conceptual features are stored within modality-specific semantic maps in the sensory and motor cortex. Nonetheless, the first traditional assumption of conceptual stability largely remains unquestioned. Here, we tested the notion of flexible concepts using functional magnetic resonance imaging and event-related potentials (ERPs) during the verification of two attribute types (visual, action-related) for words denoting artifactual and natural objects. Functional imaging predominantly revealed crossover interactions between category and attribute type in visual, motor, and motion-related brain areas, indicating that access to conceptual knowledge is strongly modulated by attribute type: Activity in these areas was highest when nondominant conceptual attributes had to be verified. ERPs indicated that these category-attribute interactions emerged as early as 116 msec after stimulus onset, suggesting that they reflect rapid access to conceptual features rather than postconceptual processing. Our results suggest that concepts are situational-dependent mental entities. They are composed of semantic features which are flexibly recruited from distributed, yet localized, semantic maps in modality-specific brain regions depending on contextual constraints.
Chronic administration of 3,4-methylenedioxymethamphetamine (MDMA) is associated with long-term depletion of serotonin (5-HT) and loss of 5-HT axons in the brains of rodents and nonhuman primates. Despite the broad database concerning the selective serotonergic neurotoxicity of recreational MDMA consumption by humans, controversy still exists with respect to the question of whether the well-known functional consequences of these neurotoxic effects, such as memory impairment, were caused by chronic 5-HT deficiency. Habituation and prepulse inhibition (PPI) of the acoustic startle response (ASR) can be used as a marker of central serotonergic functioning in rodents and humans. Thus, we investigated the functional status of the central serotonergic system in chronic but abstinent MDMA users by measuring PPI and habituation of ASR. PPI and habituation of ASR were measured in three groups. The first group (MDMA group) included 20 male drug-free chronic users of MDMA; the second group (cannabis group) consisted of 20 male drug-free chronic users of cannabis; and the third group (healthy controls) comprised 20 male participants with no history of illicit drug use. Analysis revealed significantly increased PPI of MDMA users compared to those of cannabis users and healthy controls. Cannabis users and healthy controls showed comparable patterns of PPI. There were no differences in habituation among the three groups. These results suggest that the functional consequences of chronic MDMA use may be explained by 5-HT receptor changes rather than by a chronic 5-HT deficiency condition. Use of cannabis does not lead to alterations of amplitude, habituation, or PPI of ASR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.