A disk graph is the intersection graph of a set of disks with arbitrary diameters in the plane. For the case that the disk representation is given, we present polynomial-time approximation schemes (PTASs) for the maximum weight independent set problem (selecting disjoint disks of maximum total weight) and for the minimum weight vertex cover problem in disk graphs. These are the first known PTASs for N P-hard optimization problems on disk graphs. They are based on a novel recursive subdivision of the plane that allows applying a shifting strategy on different levels simultaneously, so that a dynamic programming approach becomes feasible. The PTASs for disk graphs represent a common generalization of previous results for planar graphs and unit disk graphs. They can be extended to intersection graphs of other "disk-like" geometric objects (such as squares or regular polygons), also in higher dimensions.
In this paper, we present an efficient polynomial time approximation scheme (EPTAS) for scheduling on uniform processors, i.e. finding a minimum length schedule for a set of n independent jobs on m processors with different speeds (a fundamental NP-hard scheduling problem). The previous best polynomial time approximation scheme (PTAS) by Hochbaum and Shmoys has a running time of (n/) O(1/ 2). Our algorithm, based on a new mixed integer linear programming (MILP) formulation with a constant number of integral variables and an interesting rounding method, finds a schedule whose length is within a relative error of the optimum, and has running time 2 O(1/ 2 log(1/) 3) poly(n).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.