We explore the combined effects of a climate threshold (a potential ocean thermohaline circulation collapse), parameter uncertainty, and learning in an optimal economic growth model. Our analysis shows that significantly reducing carbon dioxide ðCO 2 Þ emissions may be justified to avoid or delay even small (and arguably realistic) damages from an uncertain and irreversible climate change-even when future learning about the system is considered. Parameter uncertainty about the threshold specific damages and the CO 2 level triggering a threshold can act to decrease near-term CO 2 abatements that maximize expected utility. r
This study compares two widely used approaches for robustness analysis of decision problems: the info-gap method originally developed by Ben-Haim and the robust decision making (RDM) approach originally developed by Lempert, Popper, and Bankes. The study uses each approach to evaluate alternative paths for climate-altering greenhouse gas emissions given the potential for nonlinear threshold responses in the climate system, significant uncertainty about such a threshold response and a variety of other key parameters, as well as the ability to learn about any threshold responses over time. Info-gap and RDM share many similarities. Both represent uncertainty as sets of multiple plausible futures, and both seek to identify robust strategies whose performance is insensitive to uncertainties. Yet they also exhibit important differences, as they arrange their analyses in different orders, treat losses and gains in different ways, and take different approaches to imprecise probabilistic information. The study finds that the two approaches reach similar but not identical policy recommendations and that their differing attributes raise important questions about their appropriate roles in decision support applications. The comparison not only improves understanding of these specific methods, it also suggests some broader insights into robustness approaches and a framework for comparing them.
Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for a different approach: to geoengineer climate by injecting aerosol precursors into the stratosphere. Published economic studies typically neglect the risks of aerosol geoengineering due to (i) the potential for a failure to sustain the aerosol forcing and (ii) the negative impacts associated with the aerosol forcing. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcing. The simplicity of the model provides the
Lack of knowledge about the values of ice sheet model input parameters introduces substantial uncertainty into projections of Greenland Ice Sheet contributions to future sea level rise. Computer models of ice sheet behavior provide one of several means of estimating future sea level rise due to mass loss from ice sheets. Such models have many input parameters whose values are not well known. Recent studies have investigated the effects of these parameters on model output, but the range of potential future sea level increases due to model parametric uncertainty has not been characterized. Here, we demonstrate that this range is large, using a 100-member perturbed-physics ensemble with the SICOPOLIS ice sheet model. Each model run is spun up over 125000 yr using geological forcings and subsequently driven into the future using an asymptotically increasing air temperature anomaly curve. All modeled ice sheets lose mass after 2005 AD. Parameters controlling surface melt dominate the model response to temperature change. After culling the ensemble to include only members that give reasonable ice volumes in 2005 AD, the range of projected sea level rise values in 2100 AD is ~40% or more of the median. Data on past ice sheet behavior can help reduce this uncertainty, but none of our ensemble members produces a reasonable ice volume change during the mid-Holocene, relative to the present. This problem suggests that the model's exponential relation between temperature and precipitation does not hold during the Holocene, or that the central-Greenland temperature forcing curve used to drive the model is not representative of conditions around the ice margin at this time (among other possibilities). Our simulations also lack certain observed physical processes that may tend to enhance the real ice sheet's response. Regardless, this work has implications for other studies that use ice sheet models to project or hindcast the behavior of the Greenland Ice Sheet
Strategies to manage the risks posed by future sea-level rise hinge on a sound characterization of the inherent uncertainties. One of the major uncertainties is the possible rapid disintegration of large fractions of the Antarctic ice sheet in response to rising global temperatures. This could potentially lead to several meters of sea-level rise during the next few centuries. Previous studies have typically been silent on two coupled questions: (i) What are probabilistic estimates of this "fast dynamics" contribution to sea-level rise? (ii) What are the implications for strategies to manage coastal flooding risks? Here, we present probabilistic hindcasts and projections of sea-level rise to 2100. The fast dynamics mechanism is approximated by a simple parameterization, designed to allow for a careful quantification of the uncertainty in its contribution to sea-level rise. We estimate that global temperature increases ranging from 1.9 to 3.1°C coincide with fast Antarctic disintegration, and these contributions account for sea-level rise of 21-74 centimeters this century (5-95% range, Representative Concentration Pathway 8.5). We use a simple cost-benefit analysis of coastal defense to demonstrate in a didactic exercise how neglecting this mechanism and associated uncertainty can (i) lead to strategies which fall sizably short of protection targets and (ii) increase the expected net costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.