The SPCs (subtilisin-like pro-protein convertases) are a family of enzymes responsible for the proteolytic processing of numerous precursor proteins of the constitutive and regulated secretory pathways. SPCs are themselves synthesized as inactive zymogens. Activation of SPCs occurs via the intramolecular autocatalytic removal of the prodomain. SPC prodomains have been proposed as templates in the development of potent and specific SPC inhibitors. In this study, we investigated the specificity and potency of complete prodomains and short C-terminal prodomain peptides of each SPC on highly purified, soluble enzyme preparations of human SPC1, SPC6, and SPC7. Progress curve kinetic analysis of prodomain peptides and complete prodomains showed competitive inhibitory profiles in the low nanomolar range. Complete prodomains were 5-100 times more potent than C-terminal prodomain peptides, suggesting that N-terminal determinants are involved in the recognition process. However, complete prodomains and prodomain peptides exhibit only a partial specificity toward their cognate enzyme. Ala-scan structure activity studies indicated the importance of basic residues in the P 4 , P 5 , and P 6 positions for inhibition of SPC1. In contrast, hydrophobic residues in P 6 and P 7 , as well as basic residues in P 4 and P 5 , were critical for inhibition of SPC7. Our data demonstrated that the use of prodomains as specific inhibitors acting in trans would be of limited usefulness, unless modified into more specific compounds.Proteolytic processing is a post-translational modification by which a cell diversifies and controls the protein products of its genes. In mammalian species, endoproteolytic activation of many secretory protein precursors is carried out by the SPCs
The synthesis of a series of new zinc phthalocyanine-peptide conjugates targeting the gastrin-releasing peptide (GRP) and integrin receptors is reported. Two alternative synthetic methods based on Sonogashira cross-coupling of an iodinated zinc phthalocyanine with acetylenic bombesin or arginine-glycine-aspartic acid (RGD) derivatives, either in solution or on solid phase, are presented. The water-soluble conjugates were screened for their photodynamic efficacy against several cancer cell lines expressing different levels of GRP and integrin receptors, and their intracellular localization was evaluated via confocal fluorescence microscopy. Variations in photocytotoxicity between the conjugates correlate to differences in hydrophobicity as well as receptor-mediated cell uptake. In the case of the phthalocyanine-bombesin conjugate, competition experiments confirm the involvement of the GRP receptor in both the phototherapeutic activity as well as intracellular localization. These findings warrant further in vivo studies to evaluate the potential of this conjugate as photosensitizer for photodynamic therapy (PDT) of cancers overexpressing the GRP receptor.
CD28null T cells are the most consistent biological indicator of the aging immune system in humans and are predictors of immunoincompetence in the elderly. The loss of CD28 is the result of an inoperative transcriptional initiator (INR), which consists of two nonoverlapping ␣ and  motifs that have distinct protein binding profiles but function as a unit. In CD28 null T cells, there is a coordinate loss of ␣-/-bound complexes, hence the ␣-INR is inactive. In the present work therefore, studies were conducted to identify the components of such complexes that may account for the trans-activation of the ␣-INR. By affinity chromatography and tandem mass spectrometry, two proteins, namely, nucleolin and the A isoform of heterogeneous nuclear ribonucleoprotein-D0 (hnRNP-D0A), were identified to be among the key components of the site ␣ complex. In DNA binding assays, specific antibodies indicated their antigenic presence in ␣-bound complexes. Transcription assays showed that they are both required in the trans-activation of ␣-INR-driven DNA templates. Because CD28 is T cell-restricted, and nucleolin and hnRNP-D0A are ubiquitous proteins, these results support the notion that cellspecific functions can be regulated by commonly expressed proteins. The present data also provide evidence for INR-regulated transcription that is independent of the known components of the basal transcription complex.
Nevirapine (NVP) treatment is associated with serious skin rashes that appear to be immune-mediated. We previously developed a rat model of this skin rash that is immune-mediated and is very similar to the rash in humans. Treatment of rats with the major NVP metabolite, 12-OH-NVP, also caused the rash. Most idiosyncratic drug reactions are caused by reactive metabolites; 12-OH-NVP forms a benzylic sulfate, which was detected in the blood of animals treated with NVP or 12-OH-NVP. This sulfate is presumably formed in the liver; however, the skin also has significant sulfotransferase activity. In this study, we used a serum against NVP to detect covalent binding in the skin of rats. There was a large artifact band in immunoblots of whole skin homogenates that interfered with detection of covalent binding; however, when the skin was separated into dermal and epidermal fractions, covalent binding was clearly present in the epidermis, which is also the location of sulfotransferases. In contrast to rats, treatment of mice with NVP did not result in covalent binding in the skin or skin rash. Although the reaction of 12-OH-NVP sulfate with nucleophiles such as glutathione is slow, incubation of this sulfate with homogenized human and rat skin led to extensive covalent binding. Incubations of 12-OH-NVP with the soluble fraction from a 9,000g centrifugation (S9) of rat or human skin homogenate in the presence of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) produced extensive covalent binding, but no covalent binding was detected with mouse skin S9, which suggests that the reason mice do not develop a rash is that they lack the required sulfotransferase. This is the first study to report covalent binding of NVP to rat and human skin. These data provide strong evidence that covalent binding of NVP in the skin is due to 12-OH-NVP sulfate, which is likely responsible for NVP-induced skin rash. Sulfation may represent a bioactivation pathway for other drugs that cause a skin rash.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.