The early light-induced proteins (ELIPs) belong to the multigenic family of light-harvesting complexes, which bind chlorophyll and absorb solar energy in green plants. ELIPs accumulate transiently in plants exposed to high light intensities. By using an Arabidopsis thaliana mutant (chaos) affected in the posttranslational targeting of light-harvesting complex-type proteins to the thylakoids, we succeeded in suppressing the rapid accumulation of ELIPs during high-light stress, resulting in leaf bleaching and extensive photooxidative damage. Constitutive expression of ELIP genes in chaos before light stress resulted in ELIP accumulation and restored the phototolerance of the plants to the wild-type level. Free chlorophyll, a generator of singlet oxygen in the light, was detected by chlorophyll fluorescence lifetime measurements in chaos leaves before the symptoms of oxidative stress appeared. Our findings indicate that ELIPs fulfill a photoprotective function that could involve either the binding of chlorophylls released during turnover of pigment-binding proteins or the stabilization of the proper assembly of those proteins during high-light stress.L ight is essential for plants through photosynthetic carbon assimilation. However, when absorbed light exceeds the photosynthetic capacities, reactive O 2 species are generated in the chloroplasts, causing oxidative damage to proteins, lipids, and photosynthetic pigments (1, 2). This effect is amplified by environmental stresses such as low temperature or drought, for example, that inhibit the photosynthetic activity, leading to strong yield reduction in crops. In green plants, solar energy is collected by chlorophyll-and carotenoid-binding lightharvesting complexes (LHCs), which are encoded by a multigene family of LHC genes. The expression of these genes is tightly regulated by light (2-4). High light intensities inhibit transcription of LHC genes and activate synthesis of the early lightinduced proteins (ELIPs), a class of proteins structurally related to the LHCs (5). The ELIPs are predicted to have three transmembrane helices, and they have sequence similarity to the LHCs in the central pair of helices (6, 7). The similarity is not only at the sequence level, however, because both LHCs and ELIPs bind chlorophyll and carotenoids (8). The ELIPs differ from the LHCs by their transient expression under high-light stress (5). Recently, a number of ELIP-type polypeptides, containing LHC motifs and inducible by high light, have been discovered in vascular plants: the one-helix high-light-induced proteins (9) and the two-helix stress-enhanced proteins (10).The physiological role of the ELIPs in vascular plants has not yet been elucidated, although there have been several suggestions (11)(12)(13)(14). The induction of ELIPs by high light intensities suggests a role in the acclimation to light stress rather than a light-harvesting function, but this has not yet been demonstrated. ELIP antisense transgenic tobacco plants did not exhibit any phenotype of sensitivity to high ...
The npq1 mutant of Arabidopsis thaliana (L.) Heynh. has no xanthophyll cycle due to a lack of functional violaxanthin de-epoxidase. Short-term exposure (<2 days) of detached leaves or whole plants to the combination of high photon flux density (1,000 micromol m(-2) s(-1)) and low temperature (10 degrees C) resulted in PSII photoinhibition which was more acute in npq1 than in the wild type. This increased photosensitivity of npql at chilling temperature was attributable to the inhibition of nonphotochemical energy quenching (NPQ) and not to the absence of zeaxanthin itself. In contrast to PSII, PSI was found to be phototolerant to chilling stress in the light in both genotypes. In the long term (10-12 days), PSII activity recovered in both npql and wild type, indicating that A. thaliana is able to acclimate to chilling stress in the light independently of the xanthophyll cycle. In npql, photoacclimation involved a substantial reduction of the light-harvesting pigment antenna of PSII and an improvement of photosynthetic electron transport. Chilling stress also induced synthesis of early light-inducedproteins (ELIPs) which, in the long term, disappeared in npql and remained stable in the wild type. In both genotypes, photoacclimation at low temperature induced the accumulation of various antioxidants including carotenoids (except beta-carotene), vitamin E (alpha- and -gamma-tocopherol) and non-photosynthetic pigments (anthocyanins and other flavonoids). Analysis of flavonoid-deficient tt mutants revealed that UV/blue-light-absorbing flavonols have a strong protective function against excess visible radiations. In contrast to the defect in npq1, the absence of flavonoids could not be overcome in the long term by compensatory mechanisms, leading to extensive photooxidative and photoinhibitory damage to the chloroplasts. Depth profiling of the leaf pigments by phase-resolved photoacoustic spectroscopy showed that the flavonoid-related photoprotection was due to light trapping, which decreased chlorophyll excitation by blue light. In contrast to flavonoids, the xanthophyll cycle and the associated NPQ seem to be mainly relevant to the protection of photosynthesis against sudden increases in light intensity.
A large proportion of the chlorophyll in a plant is engaged in harvesting light energy and transferring it to the photochemical reaction centres. These 'antenna' chlorophylls are non-covalently bound to specific proteins to form chlorophyll-protein complexes. The chlorophyll a/b-binding (CAB) polypeptides are encoded by an extended family of nuclear genes. It has recently been discovered that other proteins not known to bind chlorophyll, the early light-inducible proteins (ELIPs), are also related and could be considered part of this family. We suggest that the latter proteins may be involved in pigment biosynthesis or in assembly of the thylakoid membrane.
The levels of nuclear mRNAs for three light-inducible proteins (light-harvesting chlorophyll a/b protein, small subunit of ribulose-1,5-bisphosphate carboxylase and early light-induced protein) have been analyzed under light-dark and constant light conditions. The levels of all three mRNAs have been found to vary considerably during the day, both under ligh-dark and under constant light conditions, demonstrating the existence of diurnal and circadian rhythmicity in the expressionoof these nuclear-coded plant proteins. The levels of two of these mRNAs have been found to be enhanced 2 h before the beginning of illumination when active phytochrome levels are still low.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.