Abstract. We investigate the maximum number of simple cycles and the maximum number of Hamiltonian cycles in a planar graph G with n vertices. Using the transfer matrix method we construct a family of graphs which have at least 2.4262 n simple cycles and at least 2.0845 n Hamilton cycles. Based on counting arguments for perfect matchings we prove that 2.3404 n is an upper bound for the number of Hamiltonian cycles. Moreover, we obtain upper bounds for the number of simple cycles of a given length with a face coloring technique. Combining both, we show that there is no planar graph with more than 2.8927 n simple cycles. This reduces the previous gap between the upper and lower bound for the exponential growth from 1.03 to 0.46.
We present an on-line strategy that enables a mobile robot with vision to explore an unknown simple polygon. We prove that the resulting tour is less than 26.5 times as long as the shortest watchman tour that could be computed off-line. Our analysis is doubly founded on a novel geometric structure called the angle hull. Let D be a connected region inside a simple polygon, P. We define the angle hull of D, AH(D), to be the set of all points in P that can see two points of D at a right angle. We show that the perimeter of AH(D) cannot exceed in length the perimeter of D by more than a factor of 2. This upper bound is tight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.