In a recent article published in this journal, Lombard, Snyder-Duch, and Bracken (2002) surveyed 200 content analyses for their reporting of reliability tests; compared the virtues and drawbacks of five popular reliability measures; and proposed guidelines and standards for their use. Their discussion revealed that numerous misconceptions circulate in the content analysis literature regarding how these measures behave and can aid or deceive content analysts in their effort to ensure the reliability of their data. This paper proposes three conditions for statistical measures to serve as indices of the reliability of data and examines the mathematical structure and the behavior of the five coefficients discussed by the authors, plus two others. It compares common beliefs about these coefficients with what they actually do and concludes with alternative recommendations for testing reliability in content analysis and similar data-making efforts.
Disciplines
Communication | Social and Behavioral Sciences
In a recent article published in this journal, Lombard, Snyder-Duch, and Bracken (2002) surveyed 200 content analyses for their reporting of reliability tests; compared the virtues and drawbacks of five popular reliability measures; and proposed guidelines and standards for their use. Their discussion revealed that numerous misconceptions circulate in the content analysis literature regarding how these measures behave and can aid or deceive content analysts in their effort to ensure the reliability of their data. This paper proposes three conditions for statistical measures to serve as indices of the reliability of data and examines the mathematical structure and the behavior of the five coefficients discussed by the authors, plus two others. It compares common beliefs about these coefficients with what they actually do and concludes with alternative recommendations for testing reliability in content analysis and similar data-making efforts. Disciplines Communication | Social and Behavioral Sciences This journal article is available at ScholarlyCommons Abstract In a recent article published in this journal, Lombard, Snyder-Duch, and Bracken (2002) surveyed 200 content analyses for their reporting of reliability tests; compared the virtues and drawbacks of five popular reliability measures; and proposed guidelines and standards for their use. Their discussion revealed that numerous misconceptions circulate in the content analysis literature regarding how these measures behave and can aid or deceive content analysts in their effort to ensure the reliability of their data. This paper proposes three conditions for statistical measures to serve as indices of the reliability of data and examines the mathematical structure and the behavior of the five coefficients discussed by the authors, plus two others. It compares common beliefs about these coefficients with what they actually do and concludes with alternative recommendations for testing reliability in content analysis and similar data-making efforts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.