SUMMARY Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity “risk” gene in the regulation of host defense and inflammation.
L-selectin is a cell adhesion molecule consisting of a large, highly glycosylated, extracellular domain, a single spanning transmembrane domain and a small cytoplasmic tail. It is expressed on most leukocytes and is involved in their rolling on inflamed vascular endothelium prior to firm adhesion and transmigration. It is also required for the constitutive trafficking of lymphocytes through secondary lymphoid organs. Like most adhesion molecules, L-selectin function is regulated by a variety of mechanisms including gene transcription, post-translational modifications, association with the actin cytoskeleton, and topographic distribution. In addition, it is rapidly downregulated by proteolytic cleavage near the cell surface by ADAM-17 (TACE) and at least one other "sheddase". This process of "ectodomain shedding" results in the release of most of the extracellular portion of L-selectin from the cell surface while retaining the cytoplasmic, transmembrane, and eleven amino acids of the extracellular domain on the cell. This review will examine the mechanism(s) of L-selectin ectodomain shedding and discuss the physiological implications.
This study investigates the role of neutrophils in ischemia-induced aspermatogenesis in the mouse. Previous studies in the rat have demonstrated that ischemia-inducing testicular torsion followed by torsion repair and reperfusion resulted in germ cell-specific apoptosis. This was correlated with an increase in neutrophil adhesion to subtunical venules, an increase in reactive oxygen species, and increased expression of several apoptosis-associated molecules. In the present investigation, wild-type C57BL/6 mice were subjected to various degrees and duration of testicular torsion. A torsion of 720 degrees for 2 h caused disruption of the seminiferous epithelium and significantly reduced testis weight and daily sperm production. An immunohistochemical method specific for apoptotic nuclei indicated that these effects were due to germ cell-specific apoptosis. An increase in myeloperoxidase (MPO) activity and an increase in the number of neutrophils adhering to testicular subtunical venules after torsion repair/reperfusion demonstrated an increase in neutrophil recruitment to the testis. In contrast, E-selectin knockout mice and wild-type mice rendered neutropenic showed a significant decrease in neutrophil recruitment as evidenced by MPO activity and microscopic examination of subtunical venules. Importantly, germ cell-specific apoptosis was also reduced. Thus, germ cell-specific apoptosis is observed after ischemia/reperfusion of the murine testis, and this apoptosis is directly linked to the recruitment of neutrophils to subtunical venules. Endothelial cell adhesion molecules, particularly E-selectin, play an important role in mediating this pathology.
A closed-form analytic solution for the motion of axisymmetric rigid pellets suspended in a Newtonian fluid and driven under a pressure gradient through a rigid impermeable cylindrical tube lined with a porous deformable biphasic wall layer is derived using mixture and lubrication theories. The analysis details the velocity distributions in the lubrication and wall layers as well as the solid-phase displacement field in the wall layer. Expressions for the shear stress and pressure gradient are obtained throughout the lubrication and wall layers. Results are presented in terms of resistance, volume flow, and driving pressure relative to smooth-walled tubes for cases both with and without rigid spheres flowing in the free lumen. The analysis is motivated by its possible relevance to the rheology of blood in the microcirculation wherein the endothelial-cell glycocalyx – a carbohydrate-rich coat of macromolecules consisting of proteoglycans and glycoproteins expressed on the luminal surface of the capillary wall – might exhibit similar behaviour to the wall layer modelled here. Estimates of the permeability of the glycocalyx are taken from experimental data for fibrinogen gels formed in vitro. In a tube without pellets lined with a porous wall layer having a thickness which is 15% of the tube radius and having a permeability in the range of fibrinogen gels, approximately a 70% greater pressure drop is required to achieve the same volume flow as would occur in an equivalent smooth-walled tube without a wall layer. If, in the presence of this same wall layer, a rigid spherical pellet is introduced which is 99.5% of the free-lumen radius, the apparent viscosity increases by as much as a factor of four with a concomitant reduction in tube hematocrit of about 10% relative to the corresponding values in an equivalent smooth-walled tube having the same sphere-to-tube diameter ratio without a wall layer.
Atherosclerosis is a chronic inflammatory disease of the arterial wall and an increasing body of evidence suggests that the immune system actively participates in the initiation, progression and persistence of atherosclerosis. Different types of leukocytes such as T and B lymphocytes, natural killer cells (NK) and NKT cells, macrophages, dendritic cells and mast cells have been found within atherosclerosis-prone aortas. The mechanisms of monocyte recruitment have been partially characterized and involve P-selectin, E-selectin, VCAM-1, ICAM-1 and JAM-A. CXCL1, CCL5, CXCL4, CXCL7 and MIF are also implicated in monocyte trafficking into aortas. Recently it has been reported that Ly6C(high) and Ly6C(low) monocyte subsets differently use CCL2, CX3CL1 and CCL5 for their homing into atherosclerotic aortas. T and B lymphocytes constitutively migrate into the normal and atherosclerotic aortic wall in an L-selectin-dependent manner. Recent studies suggest an important role of CCL5, CXCL10, CXCL16, CXCR6 and MIF in T cell influx into the atherosclerotic wall. However, there is little information available on the mechanisms of recruitment of other types of the immune cells such as NK, NKT and mast cells. In this review we shall summarize what is known about leukocyte recruitment into the aortic wall during atherosclerosis with a focus on mouse model systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.