Quantum teleportation-the transmission and reconstruction over arbitrary distances of the state of a quantum system-is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.The dream of teleportation is to be able to travel by simply reappearing at some distant location. An object to be teleported can be fully characterized by its properties, which in classical physics can be determined by measurement. To make a copy of that object at a distant location one does not need the original parts and piecesall that is needed is to send the scanned information so that it can be used for reconstructing the object. But how precisely can this be a true copy of the original? What if these parts and pieces are electrons, atoms and molecules? What happens to their individual quantum properties, which according to the Heisenberg's uncertainty principle cannot be measured with arbitrary precision?Bennett et al. 1 have suggested that it is possible to transfer the quantum state of a particle onto another particle-the process of quantum teleportation-provided one does not get any information about the state in the course of this transformation. This requirement can be fulfilled by using entanglement, the essential feature of quantum mechanics 2 . It describes correlations between quantum systems much stronger than any classical correlation could be.The possibility of transferring quantum information is one of the cornerstones of the emerging field of quantum communication and quantum computation 3 . Although there is fast progress in the theoretical description of quantum information processing, the difficulties in handling quantum systems have not allowed an equal advance in the experimental realization of the new proposals. Besides the promising developments of quantum cryptography 4 (the first provably secure way to send secret messages), we have only recently succeeded in demonstrating the possibility of quantum dense coding 5 , a way to quantum mechanically enhance data compression. The main reason for this slow experimental progress is that, although there exist methods to produce pairs of entangled photons 6 , entanglement has been demonstrated for atoms only very recently 7 and it has not been possible thus far to produce entangled states of more than two quanta.Here we report the first experimental verification of quantum teleportation. By producing pairs of entangled photons by the process of parametric down-conversion and using two-photon interferometry for analysing entanglement, we could transfer a quantum property (in our case the polarization state) from one photon to another. The methods developed for this experiment will be of...
We report on a high-intensity source of polarization-entangled photon pairs with high momentum definition. Type-II noncollinear phase matching in parametric down conversion produces true entanglement: No part of the wave function must be discarded, in contrast to previous schemes. With two-photon fringe visibilities in excess of 97%, we demonstrated a violation of Bell s inequality by over 100 standard deviations in less than 5 min. The new source allowed ready preparation of all four of the EPR-Bell states.
In this paper, a scheme for the generation of long-living entanglement between two distant Λ-type three-level atoms separately trapped in two dissipative cavities is proposed. In this scheme, two dissipative cavities are coupled to their own non-Markovian environments and two three-level atoms are driven by the classical fields. The entangled state between the two atoms is produced by performing Bell state measurement (BSM) on photons leaving the dissipative cavities. Using the time-dependent Schördinger equation, we obtain the analytical results for the evolution of the entanglement. It is revealed that, by manipulating the detunings of classical field, the long-living stationary entanglement between two atoms can be generated in the presence of dissipation.
Quantum entanglement lies at the heart of new proposals for quantum communication and computation. Here we describe the recent experimental realization of quantum teleportation.
We present the experimental demonstration of a Bell-state analyzer employing two-photon interference effects. Photon pairs produced by parametric down-conversion allowed us to generate momentum-entangled Bell states and to demonstrate the properties of this device. The performance obtained indicates its readiness for use with quantum communication schemes and in experiments on the foundations of quantum mechanics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.