Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
We have identified two cell types, each using almost exclusively one of two different CD95 (APO-1/Fas) signaling pathways. In type I cells, caspase-8 was activated within seconds and caspase-3 within 30 min of receptor engagement, whereas in type II cells cleavage of both caspases was delayed for~60 min. However, both type I and type II cells showed similar kinetics of CD95-mediated apoptosis and loss of mitochondrial transmembrane potential (ΔΨ m ). Upon CD95 triggering, all mitochondrial apoptogenic activities were blocked by Bcl-2 or Bcl-x L overexpression in both cell types. However, in type II but not type I cells, overexpression of Bcl-2 or Bcl-x L blocked caspase-8 and caspase-3 activation as well as apoptosis. In type I cells, induction of apoptosis was accompanied by activation of large amounts of caspase-8 by the deathinducing signaling complex (DISC), whereas in type II cells DISC formation was strongly reduced and activation of caspase-8 and caspase-3 occurred following the loss of ΔΨ m . Overexpression of caspase-3 in the caspase-3-negative cell line MCF7-Fas, normally resistant to CD95-mediated apoptosis by overexpression of Bcl-x L , converted these cells into true type I cells in which apoptosis was no longer inhibited by Bcl-x L . In summary, in the presence of caspase-3 the amount of active caspase-8 generated at the DISC determines whether a mitochondria-independent apoptosis pathway is used (type I cells) or not (type II cells).
The APO-1/(Fas/CD95) cell surface receptor is a member of the nerve growth factor (NGF)/tumour necrosis factor (TNF) receptor superfamily and mediates apoptosis. Peripheral activated T cells (ATC) from lymphoproliferation (lpr/lpr) mutant mice that express a reduced number of APO-1 receptors have a defect in T-cell receptor (TCR)-induced apoptosis. This suggests that TCR-induced apoptosis involves APO-1. We tested this hypothesis in various human T cells: (1) malignant Jurkat cells, (2) an alloreactive T-cell clone (S13), and (3) peripheral ATC. TCR triggering through immobilized anti-CD3 antibodies or Staphylococcus enterotoxin B (SEB) superantigen induced expression of the APO-1 ligand and apoptosis in these cells. Anti-CD3-induced apoptosis of Jurkat cells was demonstrated even in single-cell cultures. In all cases apoptosis was substantially inhibited by blocking anti-APO-1 antibody fragments and soluble APO-1 receptor decoys. The APO-1 ligand was found in the supernatant of activated Jurkat cells as a soluble cytokine. We propose that TCR-induced apoptosis in ATC can occur through an APO-1 ligand-mediated autocrine suicide. These results provide a mechanism for suppression of the immune response and for peripheral tolerance by T-cell deletion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.