SUMOylation is a dynamic post‐translational protein modification that primarily takes place in cell nuclei, where it plays a key role in multiple DNA‐related processes. In neurons, the SUMOylation‐dependent control of a subset of neuronal transcription factors is known to regulate various aspects of nerve cell differentiation, development, and function. In an unbiased screen for endogenous SUMOylation targets in the developing mouse brain, based on a His6‐HA‐SUMO1 knock‐in mouse line, we previously identified the transcription factor Zinc finger and BTB domain‐containing 20 (Zbtb20) as a new SUMO1‐conjugate. We show here that the three key SUMO paralogues SUMO1, SUMO2, and SUMO3 can all be conjugated to Zbtb20 in vitro in HEK293FT cells, and we confirm the SUMOylation of Zbtb20 in vivo in mouse brain. Using primary hippocampal neurons from wild‐type and Zbtb20 knock‐out (KO) mice as a model system, we then demonstrate that the expression of Zbtb20 is required for proper nerve cell development and neurite growth and branching. Furthermore, we show that the SUMOylation of Zbtb20 is essential for its function in this context, and provide evidence indicating that SUMOylation affects the Zbtb20‐dependent transcriptional profile of neurons. Our data highlight the role of SUMOylation in the regulation of neuronal transcription factors that determine nerve cell development, and they demonstrate that key functions of the transcription factor Zbtb20 in neuronal development and neurite growth are under obligatory SUMOylation control.
Using an established biochemical approach, five subcellular fractions of human B lymphocytes were prepared by differential centrifugation. Crude membranes were passed over a lentil lectin column to enrich carbohydrate-coated cell surface microsomes. The lectin-bound fraction contained a high amount of plasma membrane-derived microsomes as indicated by cell surface markers. All subcellular fractions in Western blots proved to contain distinct but variable amounts of porin. There was a strong increase in porin content from crude membranes to plasma membrane-derived vesicles. The porin content of this fraction appeared to be higher than that of mitochondria. In the final step the plasma membrane-derived microsome fraction proved to be devoid of contamination by outer mitochondrial membranes, as revealed by antibodies against the established markers MAO B and Tom20 applied in Western blots. These data prove the extramitochondrial expression of human type-1 porin/ type-1 VDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.