Bioinert zirconia surfaces exhibit a low chemical bonding potential to resin-based luting agents. The aim was to hydroxylate dental zirconia surfaces and to examine tensile bond strength using commercial luting agents. The measured bond strength was compared with established mechanical conditioning techniques. Five acidic and one alkaline hydroxylation pretreatments were applied and compared with air abrasion and tribochemical silica coating. For the chemical characterization of hydroxyl groups and hydroxyl value, zirconia powders were used, chemically modified, and analyzed using Fourier-transformed infrared spectroscopy and a titrimetric method according to the ISO 4629 standard. All acidic pretreatment procedures exhibited increased hydroxyl values. The highest values were recorded after treatment with phosphoric acid or Piranha solution. Tensile bond strength was examined in a universal testing machine using the commercial dual-cure luting agents Multilink (Ivoclar, Liechtenstein) and Panavia F2.0 (Kuraray, Japan). Surface hydroxylation with Piranha solution in combination with the luting agent Multilink led to a bond strength of 12.47 +/- 3.25 MPa. Tribochemical silica-coated/silanized zirconia surfaces with Multilink produced the highest bond strength of 19.33 +/- 3.65 MPa. Using the luting agent Panavia F2.0, statistically homogenous values for the untreated (11.60 +/- 1.68 MPa) and for the hydroxylated surface (12.46 +/- 3,81 MPa) were measured. Bioinert zirconia surfaces were successfully hydroxylated in terms of tensile bond strength. Resin bonding with Multilink can be strongly increased by acidic treatment with Piranha solution. Bonding with Panavia F2.0 is not affected by hydroxylation, which is likely due to the incorporation of specific functional monomers.
Poly(dimethyl siloxane), PDMS, with terminal cyclic carbonate groups was prepared by cycloaddition of carbon dioxide to epoxy rings using tetra alkyl-ammonium bromide as a catalyst under efficient and mild conditions.
Herein we report a new class of low-melting ionic liquids (IL) that consist of N,N,N-trialkylammonioundecahydrododecaborates(1-) as the anion and a range of cations. The cations include the common cations of conventional ILs such as tetraalkylammonium, N-alkylpyridinium, and N-methyl-N'-alkylimidazolium. In addition, their salts with lithium, potassium, and proton cations also exist as ILs. Pulse radiolysis studies indicate that the anions do not react with solvated electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.