A new kind of binding assay is described in which the amount of a nonlabeled marker bound to the target is quantified by LC-ESI-MS-MS. This new approach was successfully implemented with nonlabeled NO 711 as marker and the GABA transporter subtype mGAT1 as target. The native marker bound to the target was liberated from the receptor protein by methanol denaturation after filtration. A reliable and sensitive LC-ESI-MS-MS method for the quantitation of NO 711 was developed, and data from mass spectrometric detection were analyzed by nonlinear regression. Kinetic MS-binding experiments yielded values for k+1 and k-1, while in saturation MS-binding experiments, Kd and Bmax values were determined. In competitive MS-binding experiments, Ki values were obtained for various test compounds covering a broad range of affinities for mGAT1. All experiments were performed in 96-well plate format with a filter plate for the separation step which improved the efficiency and throughput of the procedure. The method was validated by classical radioligand-binding experiments with the labeled marker [3H2]NO 711 in parallel. The results obtained from MS-binding experiments were found to be in good agreement with the results of the radioligand-binding assays. The new kind of MS-binding assay presented herein is further adapted to the conventional radioligand-binding assay in that the amount of bound marker is securely quantified. This promises easy implementation in accordance with conventional binding assays without the major drawbacks that are inherent in radioligand or fluorescence binding assays. Therefore, MS-binding assays are a true alternative to classical radioligand-binding assays.
Three new cytosine derived DNA modifications, 5-hydroxymethyl-2'-deoxycytidine (hmdC), 5-formyl-2'-deoxycytidine (fdC) and 5-carboxy-2'-deoxycytidine (cadC) were recently discovered in mammalian DNA, particularly in stem cell DNA. Their function is currently not clear, but it is assumed that in stem cells they might be intermediates of an active demethylation process. This process may involve base excision repair, C-C bond cleaving reactions or deamination of hmdC to 5-hydroxymethyl-2'-deoxyuridine (hmdU). Here we report chemical studies that enlighten the chemical reactivity of the new cytosine nucleobases. We investigated their sensitivity toward oxidation and deamination and we studied the C-C bond cleaving reactivity of hmdC, fdC, and cadC in the absence and presence of thiols as biologically relevant (organo)catalysts. We show that hmdC is in comparison to mdC rapidly oxidized to fdC already in the presence of air. In contrast, deamination reactions were found to occur only to a minor extent. The C-C bond cleavage reactions require the presence of high concentration of thiols and are acid catalyzed. While hmdC dehydroxymethylates very slowly, fdC and especially cadC react considerably faster to dC. Thiols are active site residues in many DNA modifiying enzymes indicating that such enzymes could play a role in an alternative active DNA demethylation mechanism via deformylation of fdC or decarboxylation of cadC. Quantum-chemical calculations support the catalytic influence of a thiol on the C-C bond cleavage.
In the present study, the application of mass spectrometry (MS) binding assays as a tool for library screening is reported. For library generation, dynamic combinatorial chemistry (DCC) was used. These libraries can be screened by means of MS binding assays when appropriate measures are taken to render the libraries pseudostatic. That way, the efficiency of MS binding assays to determine ligand binding in compound screening with the ease of library generation by DCC is combined. The feasibility of this approach is shown for γ-aminobutyric acid (GABA) transporter 1 (GAT1) as a target, representing the most important subtype of the GABA transporters. For the screening, hydrazone libraries were employed that were generated in the presence of the target by reacting various sets of aldehydes with a hydrazine derivative that is delineated from piperidine-3-carboxylic acid (nipecotic acid), a common fragment of known GAT1 inhibitors. To ensure that the library generated is pseudostatic, a large excess of the nipecotic acid derivative is employed. As the library is generated in a buffer system suitable for binding and the target is already present, the mixtures can be directly analyzed by MS binding assays-the process of library generation and screening thus becoming simple to perform. The binding affinities of the hits identified by deconvolution were confirmed in conventional competitive MS binding assays performed with single compounds obtained by separate synthesis. In this way, two nipecotic acid derivatives exhibiting a biaryl moiety, 1-{2-[2'-(1,1'-biphenyl-2-ylmethylidene)hydrazine]ethyl}piperidine-3-carboxylic acid and 1-(2-{2'-[1-(2-thiophenylphenyl)methylidene]hydrazine}ethyl)piperidine-3-carboxylic acid, were found to be potent GAT1 ligands exhibiting pK(i) values of 6.186 ± 0.028 and 6.229 ± 0.039, respectively. This method enables screening of libraries, whether generated by conventional chemistry or DCC, and is applicable to all kinds of targets including membrane-bound targets such as G protein coupled receptors (GPCRs), ion channels and transporters. As such, this strategy displays high potential in the drug discovery process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.