To identify new components that regulate the inflammatory cascade during sepsis, we characterized the functions of myeloid-related protein-8 (Mrp8, S100A8) and myeloid-related protein-14 (Mrp14, S100A9), two abundant cytoplasmic proteins of phagocytes. We now demonstrate that mice lacking Mrp8-Mrp14 complexes are protected from endotoxin-induced lethal shock and Escherichia coli-induced abdominal sepsis. Both proteins are released during activation of phagocytes, and Mrp8-Mrp14 complexes amplify the endotoxin-triggered inflammatory responses of phagocytes. Mrp8 is the active component that induces intracellular translocation of myeloid differentiation primary response protein 88 and activation of interleukin-1 receptor-associated kinase-1 and nuclear factor-kappaB, resulting in elevated expression of tumor necrosis factor-alpha (TNF-alpha). Using phagocytes expressing a nonfunctional Toll-like receptor 4 (TLR4), HEK293 cells transfected with TLR4, CD14 and MD2, and by surface plasmon resonance studies in vitro, we demonstrate that Mrp8 specifically interacts with the TLR4-MD2 complex, thus representing an endogenous ligand of TLR4. Therefore Mrp8-Mrp14 complexes are new inflammatory components that amplify phagocyte activation during sepsis upstream of TNFalpha-dependent effects.
BACKGROUND The study of autoinflammatory diseases has uncovered mechanisms underlying cytokine dysregulation and inflammation. METHODS We analyzed the DNA of an index patient with early-onset systemic inflammation, cutaneous vasculopathy, and pulmonary inflammation. We sequenced a candidate gene, TMEM173, encoding the stimulator of interferon genes (STING), in this patient and in five unrelated children with similar clinical phenotypes. Four children were evaluated clinically and immunologically. With the STING ligand cyclic guanosine monophosphate–adenosine monophosphate (cGAMP), we stimulated peripheral-blood mononuclear cells and fibroblasts from patients and controls, as well as commercially obtained endothelial cells, and then assayed transcription of IFNB1, the gene encoding interferon-β, in the stimulated cells. We analyzed IFNB1 reporter levels in HEK293T cells cotransfected with mutant or nonmutant STING constructs. Mutant STING leads to increased phosphorylation of signal transducer and activator of transcription 1 (STAT1), so we tested the effect of Janus kinase (JAK) inhibitors on STAT1 phosphorylation in lymphocytes from the affected children and controls. RESULTS We identified three mutations in exon 5 of TMEM173 in the six patients. Elevated transcription of IFNB1 and other gene targets of STING in peripheral-blood mono-nuclear cells from the patients indicated constitutive activation of the pathway that cannot be further up-regulated with stimulation. On stimulation with cGAMP, fibro-blasts from the patients showed increased transcription of IFNB1 but not of the genes encoding interleukin-1 (IL1), interleukin-6 (IL6), or tumor necrosis factor (TNF). HEK293T cells transfected with mutant constructs show elevated IFNB1 reporter levels. STING is expressed in endothelial cells, and exposure of these cells to cGAMP resulted in endothelial activation and apoptosis. Constitutive up-regulation of phosphorylated STAT1 in patients’ lymphocytes was reduced by JAK inhibitors. CONCLUSIONS STING-associated vasculopathy with onset in infancy (SAVI) is an autoinflammatory disease caused by gain-of-function mutations in TMEM173.
Reactive oxygen species (ROS) molecules are implicated in signal transduction pathways and thereby control a range of biological activities. Immune cells are constantly confronted with ROS molecules under both physiologic and pathogenic conditions. Myeloid-derived suppressor cells (MDSCs) are immunosuppressive, immature myeloid cells and serve as major regulators of pathogenic and inflammatory immune responses. In addition to their own release of ROS, MDSCs often arise in oxidative-stress prone environments such as in tumors or during inflammation and infection. This evidently close relationship between MDSCs and ROS prompted us to summarize what is currently known about ROS signaling within MDSCs and to elucidate how MDSCs use ROS to modulate other immune cells. ROS not only activate anti-oxidative pathways but also induce transcriptional programs that regulate the fate and function of MDSCs. Furthermore, MDSCs release ROS molecules as part of a major mechanism to suppress T cell responses. Targeting redox-regulation of MDSCs thus presents a promising approach to cancer therapy and the role of redox-signaling in MDSCs in other disease states such as infection, inflammation and autoimmunity would appear to be well worth investigating.
Accumulating evidence suggests that oxidative stress plays a major role in the pathogenesis of multiple sclerosis (MS). Reactive oxygen species (ROS), which if produced in excess lead to oxidative stress, have been implicated as mediators of demyelination and axonal damage in both MS and its animal models. One of the most studied cell populations in the context of ROS-mediated tissue damage in MS are macrophages and their CNS companion, microglia cells. However, and this aspect is less well appreciated, the extracellular and intracellular redox milieu is integral to many processes underlying T cell activation, proliferation and apoptosis. In this review article we discuss how oxidative stress affects central as well as peripheral aspects of MS and how manipulation of ROS pathways can potentially affect the course of the disease. It is our strong belief that the well-directed shaping of ROS pathways has the potential to ameliorate disease progression in MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.