In seed plants, shoot branching is initiated by the formation of new meristems in the axils of leaves, which subsequently develop into new axes of growth. This study describes the genetic control of axillary meristem formation by the LATERAL SUPPRESSOR (LAS) gene in Arabidopsis thaliana. las mutants show a novel phenotype that is characterized by the inability to form lateral shoots during vegetative development. The analysis shows that axillary meristem formation is differently regulated during different phases of development. During reproductive development, axillary meristems initiate in close proximity to the shoot apical meristem and do not require LAS function. In contrast, during the vegetative phase, axillary meristems initiate at a distance to the SAM and require LAS function. This control mechanism is conserved between the distantly related species tomato and Arabidopsis. Monitoring the patterns of LAS and SHOOT MERISTEMLESS transcript accumulation allowed us to identify early steps in the development of leaf axil identity, which seem to be a prerequisite for axillary meristem initiation. Other regulators of shoot branching, like REVOLUTA and AUXIN RESISTANT 1, act downstream of LAS. The results are discussed in the context of the "detached meristem" and the "de novo formation" concepts of axillary meristem formation.
We generated transgenic tomato plants with altered expression of heat stress transcription factor HsfA1. Plants with 10-fold overexpression of HsfA1 (OE plants) were characterized by a single HsfA1 transgene cassette, whereas plants harboring a tandem inverted repeat of the cassette showed cosuppression (CS plants) by posttranscriptional silencing of the HsfA1 gene connected with formation of small interfering RNAs. Under normal growth conditions, major developmental parameters were similar for wild-type (WT), OE, and CS plants. However, CS plants and fruits were extremely sensitive to elevated temperatures, because heat stress-induced synthesis of chaperones and Hsfs was strongly reduced or lacking. Despite the complexity of the plant Hsf family with at least 17 members in tomato, HsfA1 has a unique function as master regulator for induced thermotolerance. Using transient reporter assays with mesophyll protoplasts from WT tomato, we demonstrated that plasmid-encoded HsfA1 and HsfA2 were well expressed. However, in CS protoplasts the cosuppression phenomenon was faithfully reproduced. Only transformation with HsfA2 expression plasmid led to normal expression of the transcription factor and reporter gene activation, whereas even high amounts of HsfA1 expression plasmids were silenced. Thermotolerance in CS protoplasts was restored by plasmid-borne HsfA2, resulting in expression of chaperones, thermoprotection of firefly luciferase, and assembly of heat stress granules. (Pelham 1982;Pelham and Bienz 1982;Nover 1987). Similar to other transcription factors, Hsfs have a modular structure with an N-terminal DNA-binding domain characterized by a central helix-turn-helix motif, an adjacent oligomerization domain with a bipartite heptad pattern of hydrophobic amino acid residues (HR-A/B region), and sequence motifs essential for nuclear import and export (NLS, NES;Wu 1995;Morimoto 1998;Heerklotz et al. 2001;Nover et al. 2001). In many cases, the C-terminal activation domains are characterized by short peptide motifs (AHA motifs) shown to be crucial for the activator function (Döring et al. 2000).Sequencing of the Arabidopsis genome revealed a unique complexity of the Hsf family with 21 members, in contrast to yeast and Drosophila with one Hsf and vertebrates with four Hsfs (Wu 1995;Nover et al. 2001). From analyses of expressed sequence tag (EST) libraries, it is evident that the size of the Hsf family is comparable also in other plants, with 17 Hsfs thus far identified from tomato ESTs . By structural characteristics and phylogenetic comparison, plant Hsfs were assigned to three classes. In Arabidopsis, there are 15
The ability of the shoot apical meristem to multiply and distribute its meristematic potential through the formation of axillary meristems is essential for the diversity of forms and growth habits of higher plants. In the lateral suppressor mutant of tomato the initiation of axillary meristems is prevented, thus offering the unique opportunity to study the molecular mechanisms underlying this important function of the shoot apical meristem. We report here the isolation of the Lateral suppressor gene by positional cloning and show that the mutant phenotype is caused by a complete loss of function of a new member of the VHIID family of plant regulatory proteins.
The resistant cherry tomato (Solanum lycopersicum var. cerasiforme) line LC-95, derived from an accession collected in Ecuador, harbors a natural allele (ol-2) that confers broad-spectrum and recessively inherited resistance to powdery mildew (Oidium neolycopersici). As both the genetic and phytopathological characteristics of ol-2-mediated resistance are reminiscent of powdery mildew immunity conferred by loss-of-function mlo alleles in barley and Arabidopsis, we initiated a candidate-gene approach to clone Ol-2. A tomato Mlo gene (SlMlo1) with high sequence-relatedness to barley Mlo and Arabidopsis AtMLO2 mapped to the chromosomal region harboring the Ol-2 locus. Complementation experiments using transgenic tomato lines as well as virus-induced gene silencing assays suggested that loss of SlMlo1 function is responsible for powdery mildew resistance conferred by ol-2. In progeny of a cross between a resistant line bearing ol-2 and the susceptible tomato cultivar Moneymaker, a 19-bp deletion disrupting the SlMlo1 coding region cosegregated with resistance. This polymorphism results in a frameshift and, thus, a truncated nonfunctional SlMlo1 protein. Our findings reveal the second example of a natural mlo mutant that possibly arose postdomestication, suggesting that natural mlo alleles might be evolutionarily short-lived due to fitness costs related to loss of mlo function.
In seed plants, shoot branching is initiated during postembryonic development by the formation of secondary meristems. These new meristems, which are established between the stem and leaf primordia, develop into vegetative branches or flowers. Thus, the number of axillary meristems has a major impact on plant architecture and reproductive success. This study describes the genetic control of axillary meristem formation in Arabidopsis thaliana by a group of three R2R3 Myb genes, which are homologous to the tomato (Solanum lycopersicum) Blind gene and were designated REGULATORS OF AXILLARY MERISTEMS (RAX). rax mutants show new phenotypes that are characterized by defects in lateral bud formation in overlapping zones along the shoot axis. RAX genes are partially redundant in function and allow a fine-tuning of secondary axis formation. As revealed by monitoring of SHOOT MERISTEMLESS transcript accumulation, the RAX genes control a very early step of axillary meristem initiation. The RAX1 and RAX3 expression domains specifically mark a cell group in the center of the leaf axil from which the axillary meristem develops. Double mutant combinations of lateral suppressor and rax1-3 as well as expression studies suggest that at least two pathways control the initiation of axillary meristems in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.